Abstract
Solid oxide fuel cells with LaSr 2Fe 2CrO 9-δ-Gd 0.1Ce 0.9O 2-δ composite anodes were tested in H 2, H 2S-contaminated H 2, and CH 4 fuels as well as under redox cycling conditions. The La 0.9Sr 0.1Ga 0.8Mg 0.2O 3-δ electrolyte supported cells had La 0.4Ce 0.6O 2-δ barrier layers to prevent cation diffusion between LaSr 2Fe 2CrO 9-δ and La 0.9Sr 0.1Ga 0.8Mg 0.2O 3-δ. After an initial break-in where the performance improved slightly, the cells were stable in humidified H 2 with a power density > 0.4 W cm - 2 and an anode polarization resistance as low as 0.22 Ω cm 2. Anode polarization resistance showed little or no change after 15 redox cycles at 800 °C. Cell performance was stable with 22 ppm H 2S, with only a slight performance decrease relative to pure H 2, but higher H 2S concentrations caused continuous degradation. Also, the performance in humidified CH 4 fuel was quite low.
Original language | English (US) |
---|---|
Pages (from-to) | 1-5 |
Number of pages | 5 |
Journal | Solid State Ionics |
Volume | 212 |
DOIs | |
State | Published - Mar 29 2012 |
Keywords
- Oxide anode
- Perovskite
- Redox
- Solid oxide fuel cell
- Sulfur tolerance
ASJC Scopus subject areas
- General Chemistry
- General Materials Science
- Condensed Matter Physics