Structural effects and translocation of doxorubicin in a DPPC/Chol bBilayer: The role of cholesterol

Tyrone J. Yacoub, Allam S. Reddy, Igal Szleifer*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

58 Scopus citations

Abstract

We use molecular dynamics simulations to characterize the influence of cholesterol (Chol) on the interaction between the anticancer drug doxorubicin (DOX) and a dipalmitoyl phosphatidylcholine/Chol lipid bilayer. We calculate the potential of mean force, which gives us an estimate of the free energy barrier for DOX translocation across the membrane. We find free energy barriers of 23.1 ± 3.1 k BT, 36.8 ± 5.1 k BT, and 54.5 ± 4.7 k BT for systems composed of 0%, 15%, and 30% Chol, respectively. Our predictions agree with Arrhenius activation energies from experiments using phospholipid membranes, including 20 k BT for 0% Chol and 37.2 k BT for 20% Chol. The location of the free energy barrier for translocation across the bilayer is dependent on composition. As Chol concentration increases, this barrier changes from the release of DOX into the water to flip-flop over the membrane center. The drug greatly affects local membrane structure by attracting dipalmitoyl phosphatidylcholine headgroups, curving the membrane, and allowing water penetration. Despite its hydrophobicity, DOX facilitates water transport via its polar groups.

Original languageEnglish (US)
Pages (from-to)378-385
Number of pages8
JournalBiophysical Journal
Volume101
Issue number2
DOIs
StatePublished - Jul 20 2011

Funding

This work was supported by the National Science Foundation under grant CBET-0828046 and National Institutes of Health grant No. NIH GM087016.

ASJC Scopus subject areas

  • Biophysics

Fingerprint

Dive into the research topics of 'Structural effects and translocation of doxorubicin in a DPPC/Chol bBilayer: The role of cholesterol'. Together they form a unique fingerprint.

Cite this