Structural Evolution of Three-Component Nanoparticles in Polymer Nanoreactors

Peng Cheng Chen, Jingshan S. Du, Brian Meckes, Liliang Huang, Zhuang Xie, James L. Hedrick, Vinayak P. Dravid, Chad A. Mirkin*

*Corresponding author for this work

Research output: Contribution to journalArticle

18 Scopus citations

Abstract

Recent developments in scanning probe block copolymer lithography (SPBCL) enable the confinement of multiple metal precursors in a polymer nanoreactor and their subsequent transformation into a single multimetallic heterostructured nanoparticle through thermal annealing. However, the process by which multimetallic nanoparticles form in SPBCL-patterned nanoreactors remains unclear. Here, we utilize the combination of PEO-b-P2VP and Au, Ag, and Cu salts as a model three-component system to investigate this process. The data suggest that the formation of single-component Au, Ag, or Cu nanoparticles within polymer nanoreactors consists of two stages: (I) nucleation, growth, and coarsening of the particles to yield a single particle in each reactor; (II) continued particle growth by depletion of the remaining precursor in the reactor until the particle reaches a stable size. Also, different aggregation rates are observed for single-component particle formation (Au > Ag > Cu). This behavior is also observed for two-component systems, where nucleation sites have greater Au content than the other metals. This information can be used to trap nanoparticles with kinetic structures. High-temperature treatment ultimately facilitates the structural evolution of the kinetic particle into a particle with a fixed structure. Therefore, with multicomponent systems, a third stage that involves elemental redistribution within the particle must be part of the description of the synthetic process. This work not only provides a glimpse at the mechanism underlying multicomponent nanoparticle formation in SPBCL-generated nanoreactors but also illustrates, for the first time, the utility of SPBCL as a platform for controlling the architectural evolution of multimetallic nanoparticles in general.

Original languageEnglish (US)
Pages (from-to)9876-9884
Number of pages9
JournalJournal of the American Chemical Society
Volume139
Issue number29
DOIs
StatePublished - Jul 26 2017

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint Dive into the research topics of 'Structural Evolution of Three-Component Nanoparticles in Polymer Nanoreactors'. Together they form a unique fingerprint.

  • Cite this