Structural modifications to polystyrene via self-assembling molecules

John C. Stendahl*, Eugene R. Zubarev, Michael S. Arnold, Mark C. Hersam, Hung Jue Sue, Samuel I. Stupp

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

We have previously reported that small quantities of self-assembling molecules known as dendron rodcoils (DRCs) can be used as supramolecular additives to modify the properties of polystyrene (PS). These molecules spontaneously assemble into supra-molecular nanoribbons that can be incorporated into bulk PS in such a way that the orientation of the polymer is significantly enhanced when mechanically drawn above the glass-transition temperature. In the current study, we more closely evaluate the structural role of the DRC nanoribbons in PS by investigating the mechanical properties and deformation microstructures of polymers modified by self-assembly. In comparision to PS homopolymer, PS containing small amounts (≤1.0 wt.-%) of self-assembling DRC molecules exhibit greater Charpy impact strengths in double-notch four-point bending and significantly greater elongations to failure in uniaxial tension at 250 % prestrain. Although the DRC-modified polymer shows significantly smaller elongations to failure at 1000% prestrain, both low- and high-prestrain specimens maintain tensile strengths that are comparable to those of the homopolymer. The improved toughness and ductility of DRC-modified PS appears to be related to the increased stress whitening and craze density that was observed near fracture surfaces. However, the mechanism by which the self-assembling DRC molecules toughen PS is different from that of conventional additives. These molecules assemble into supramolecular nanoribbons that enhance polymer orientation, which in turn modifies crazing patterns and improves impact strength and ductility.

Original languageEnglish (US)
Pages (from-to)487-493
Number of pages7
JournalAdvanced Functional Materials
Volume15
Issue number3
DOIs
StatePublished - Mar 2005

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • General Chemistry
  • General Materials Science
  • Electrochemistry
  • Biomaterials

Fingerprint

Dive into the research topics of 'Structural modifications to polystyrene via self-assembling molecules'. Together they form a unique fingerprint.

Cite this