Structure of first- and second-stage mineralized elements in teeth of the sea urchin Lytechinus variegatus

J. S. Robach, S. R. Stock*, A. Veis

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

21 Scopus citations

Abstract

Microstructure of the teeth of the sea urchin Lytechinus variegatus was investigated using optical microscopy, SEM (scanning electron microscopy) and SIMS (secondary ion mass spectroscopy). The study focused on the internal structure of the first-stage mineral structures of high Mg calcite (primary, secondary and carinar process plates, prisms) and on morphology of the columns of second-stage mineral (very high Mg calcite) that cement the first-stage material together. Optical micrographs under polarized light revealed contrast in the centers (midlines) of carinar process plates and in prisms in polished sections; staining of primary and carinar process plates revealed significant dye uptake at the plate centers. Demineralization with and without fixation revealed that the midlines of primary and carinar process plates (but not secondary plates) and the centers of prisms differed from the rest of the plate or prism, and SIMS showed proteins concentrated in these plate centers. SEM was used to study the morphology of columns, the fracture surfaces of mature teeth and the 3D morphology of prisms. These observations of internal structures in plates and prisms offer new insight into the mineralization process and suggest an important role for protein inclusions within the first-stage mineral. Some of the 3D structures not reported previously, such as twisted prisms and stacks of carinar process plates with nested wrinkles, may represent structural strengthening strategies.

Original languageEnglish (US)
Pages (from-to)452-466
Number of pages15
JournalJournal of Structural Biology
Volume168
Issue number3
DOIs
StatePublished - Dec 1 2009

Keywords

  • Biomineralization
  • Calcite
  • SEM
  • SIMS
  • Sea urchin
  • Tooth

ASJC Scopus subject areas

  • Structural Biology

Fingerprint Dive into the research topics of 'Structure of first- and second-stage mineralized elements in teeth of the sea urchin Lytechinus variegatus'. Together they form a unique fingerprint.

Cite this