TY - JOUR
T1 - Structures of γ-Aminobutyric Acid (GABA) Aminotransferase, a Pyridoxal 5′-Phosphate, and [2Fe-2S] Cluster-containing Enzyme, Complexed with γ-Ethynyl-GABA and with the Antiepilepsy Drug Vigabatrin
AU - Storici, Paola
AU - De Biase, Daniela
AU - Bossa, Francesco
AU - Bruno, Stefano
AU - Mozzarelli, Andrea
AU - Peneff, Caroline
AU - Silverman, Richard B.
AU - Schirmer, Tilman
PY - 2004/1/2
Y1 - 2004/1/2
N2 - γ-Aminobutyric acid aminotransferase (GABA-AT) is a pyridoxal 5′-phosphate-dependent enzyme responsible for the degradation of the inhibitory neurotransmitter GABA. GABA-AT is a validated target for antiepilepsy drugs because its selective inhibition raises GABA concentrations in brain. The antiepilepsy drug, γ-vinyl-GABA (vigabatrin) has been investigated in the past by various biochemical methods and resulted in several proposals for its mechanisms of inactivation. In this study we solved and compared the crystal structures of pig liver GABA-AT in its native form (to 2.3-Å resolution) and in complex with vigabatrin as well as with the close analogue y-ethynyl-GABA (to 2.3 and 2.8 Å, respectively). Both inactivators form a covalent ternary adduct with the active site Lys-329 and the pyridoxal 5′-phosphate (PLP) cofactor. The crystal structures provide direct support for specific inactivation mechanisms proposed earlier on the basis of radio-labeling experiments. The reactivity of GABA-AT crystals with the two GABA analogues was also investigated by polarized absorption microspectrophotometry. The spectral data are discussed in relation to the proposed mechanism. Intriguingly, all three structures revealed a [2Fe-2S] cluster of yet unknown function at the center of the dimeric molecule in the vicinity of the PLP cofactors.
AB - γ-Aminobutyric acid aminotransferase (GABA-AT) is a pyridoxal 5′-phosphate-dependent enzyme responsible for the degradation of the inhibitory neurotransmitter GABA. GABA-AT is a validated target for antiepilepsy drugs because its selective inhibition raises GABA concentrations in brain. The antiepilepsy drug, γ-vinyl-GABA (vigabatrin) has been investigated in the past by various biochemical methods and resulted in several proposals for its mechanisms of inactivation. In this study we solved and compared the crystal structures of pig liver GABA-AT in its native form (to 2.3-Å resolution) and in complex with vigabatrin as well as with the close analogue y-ethynyl-GABA (to 2.3 and 2.8 Å, respectively). Both inactivators form a covalent ternary adduct with the active site Lys-329 and the pyridoxal 5′-phosphate (PLP) cofactor. The crystal structures provide direct support for specific inactivation mechanisms proposed earlier on the basis of radio-labeling experiments. The reactivity of GABA-AT crystals with the two GABA analogues was also investigated by polarized absorption microspectrophotometry. The spectral data are discussed in relation to the proposed mechanism. Intriguingly, all three structures revealed a [2Fe-2S] cluster of yet unknown function at the center of the dimeric molecule in the vicinity of the PLP cofactors.
UR - http://www.scopus.com/inward/record.url?scp=0347052772&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0347052772&partnerID=8YFLogxK
U2 - 10.1074/jbc.M305884200
DO - 10.1074/jbc.M305884200
M3 - Article
C2 - 14534310
AN - SCOPUS:0347052772
SN - 0021-9258
VL - 279
SP - 363
EP - 373
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 1
ER -