Study of microscale three-dimensional printing using near-field melt electrospinning

Xiangyu You, Chengcong Ye, Ping Guo

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Three-dimensional (3D) printing of microscale structures with high resolution (sub-micron) and low cost is still a challenging work for the existing 3D printing techniques. Here we report a direct writing process via near-field melt electrospinning to achieve microscale printing of single filament wall structures. The process allows continuous direct writing due to the linear and stable jet trajectory in the electric near-field. The layer-by-later stacking of fibers, or self-assembly effect, is attributed to the attraction force from the molten deposited fibers and accumulated negative charges. We demonstrated successful printing of various 3D thin wall structures (freestanding single walls, double walls, annular walls, star-shaped structures, and curved wall structures) with a minimal wall thickness less than 5 μm. By optimizing the process parameters of near-field melt electrospinning (electric field strength, collector moving speed, and needle-to-collector distance), ultrafine poly (e-caprolactone) (PCL) fibers have been stably generated and precisely stacked and fused into 3D thin-wall structures with an aspect ratio of more than 60. It is envisioned that the near-field melt electrospinning can be transformed into a viable high-resolution and low-cost microscale 3D printing technology.

Original languageEnglish (US)
Title of host publicationAdditive Manufacturing; Materials
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791850732
DOIs
StatePublished - Jan 1 2017
EventASME 2017 12th International Manufacturing Science and Engineering Conference, MSEC 2017 collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing - Los Angeles, United States
Duration: Jun 4 2017Jun 8 2017

Publication series

NameASME 2017 12th International Manufacturing Science and Engineering Conference, MSEC 2017 collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing
Volume2

Other

OtherASME 2017 12th International Manufacturing Science and Engineering Conference, MSEC 2017 collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing
CountryUnited States
CityLos Angeles
Period6/4/176/8/17

Keywords

  • 3D printing
  • Melt electrospinning
  • Near-field electrospinning

ASJC Scopus subject areas

  • Industrial and Manufacturing Engineering

Fingerprint Dive into the research topics of 'Study of microscale three-dimensional printing using near-field melt electrospinning'. Together they form a unique fingerprint.

Cite this