TY - GEN
T1 - Subjective Probability Correction for Uncertainty Representations
AU - Yang, Fumeng
AU - Hedayati, Maryam
AU - Kay, Matthew
N1 - Publisher Copyright:
© 2023 ACM.
PY - 2023/4/19
Y1 - 2023/4/19
N2 - We propose a new approach to uncertainty communication: we keep the uncertainty representation fixed, but adjust the distribution displayed to compensate for biases in people's subjective probability in decision-making. To do so, we adopt a linear-in-probit model of subjective probability and derive two corrections to a Normal distribution based on the model's intercept and slope: one correcting all right-tailed probabilities, and the other preserving the mode and one focal probability. We then conduct two experiments on U.S. demographically-representative samples. We show participants hypothetical U.S. Senate election forecasts as text or a histogram and elicit their subjective probabilities using a betting task. The first experiment estimates the linear-in-probit intercepts and slopes, and confirms the biases in participants' subjective probabilities. The second, preregistered follow-up shows participants the bias-corrected forecast distributions. We find the corrections substantially improve participants' decision quality by reducing the integrated absolute error of their subjective probabilities compared to the true probabilities. These corrections can be generalized to any univariate probability or confidence distribution, giving them broad applicability. Our preprint, code, data, and preregistration are available at https://doi.org/10.17605/osf.io/kcwxm
AB - We propose a new approach to uncertainty communication: we keep the uncertainty representation fixed, but adjust the distribution displayed to compensate for biases in people's subjective probability in decision-making. To do so, we adopt a linear-in-probit model of subjective probability and derive two corrections to a Normal distribution based on the model's intercept and slope: one correcting all right-tailed probabilities, and the other preserving the mode and one focal probability. We then conduct two experiments on U.S. demographically-representative samples. We show participants hypothetical U.S. Senate election forecasts as text or a histogram and elicit their subjective probabilities using a betting task. The first experiment estimates the linear-in-probit intercepts and slopes, and confirms the biases in participants' subjective probabilities. The second, preregistered follow-up shows participants the bias-corrected forecast distributions. We find the corrections substantially improve participants' decision quality by reducing the integrated absolute error of their subjective probabilities compared to the true probabilities. These corrections can be generalized to any univariate probability or confidence distribution, giving them broad applicability. Our preprint, code, data, and preregistration are available at https://doi.org/10.17605/osf.io/kcwxm
KW - election forecasts
KW - perception
KW - subjective probability
KW - uncertainty visualization
UR - http://www.scopus.com/inward/record.url?scp=85160011335&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85160011335&partnerID=8YFLogxK
U2 - 10.1145/3544548.3580998
DO - 10.1145/3544548.3580998
M3 - Conference contribution
AN - SCOPUS:85160011335
T3 - Conference on Human Factors in Computing Systems - Proceedings
BT - CHI 2023 - Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems
PB - Association for Computing Machinery
T2 - 2023 CHI Conference on Human Factors in Computing Systems, CHI 2023
Y2 - 23 April 2023 through 28 April 2023
ER -