Subtyping CKD patients by consensus clustering: The chronic renal insufficiency cohort (CRIC) study

Zihe Zheng*, Sushrut S. Waikar, Insa M. Schmidt, J. Richard Landis, Chi Yuan Hsu, Tariq Shafi, Harold I. Feldman, Amanda H. Anderson, Francis P. Wilson, Jing Chen, Hernan Rincon-Choles, Ana C. Ricardo, Georges Saab, Tamara Isakova, Radhakrishna Kallem, Jeffrey C. Fink, Panduranga S. Rao, Dawei Xie, Wei Yang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Background CKD is a heterogeneous condition with multiple underlying causes, risk factors, and outcomes. Subtyping CKD with multidimensional patient data holds the key to precision medicine. Consensus clustering may reveal CKD subgroups with different risk profiles of adverse outcomes. Methods We used unsupervised consensus clustering on 72 baseline characteristics among 2696 participants in the prospective Chronic Renal Insufficiency Cohort (CRIC) study to identify novel CKD subgroups that best represent the data pattern. Calculation of the standardized difference of each parameter used the cutoff of 60.3 to show subgroup features. CKD subgroup associations were examined with the clinical end points of kidney failure, the composite outcome of cardiovascular diseases, and death. Results The algorithm revealed three unique CKD subgroups that best represented patients’ baseline characteristics. Patients with relatively favorable levels of bone density and cardiac and kidney function markers, with lower prevalence of diabetes and obesity, and who used fewer medications formed cluster 1 (n51203). Patients with higher prevalence of diabetes and obesity and who used more medications formed cluster 2 (n51098). Patients with less favorable levels of bone mineral density, poor cardiac and kidney function markers, and inflammation delineated cluster 3 (n5395). These three subgroups, when linked with future clinical end points, were associated with different risks of CKD progression, cardiovascular disease, and death. Furthermore, patient heterogeneity among predefined subgroups with similar baseline kidney function emerged. Conclusions Consensus clustering synthesized the patterns of baseline clinical and laboratory measures and revealed distinct CKD subgroups, which were associated with markedly different risks of important clinical outcomes. Further examination of patient subgroups and associated biomarkers may provide next steps toward precision medicine.

Original languageEnglish (US)
Pages (from-to)639-653
Number of pages15
JournalJournal of the American Society of Nephrology
Volume32
Issue number3
DOIs
StatePublished - Mar 2021

ASJC Scopus subject areas

  • Nephrology

Fingerprint

Dive into the research topics of 'Subtyping CKD patients by consensus clustering: The chronic renal insufficiency cohort (CRIC) study'. Together they form a unique fingerprint.

Cite this