Abstract
Suitanes are a class of mechanically interlocked molecules (MIMs) that consist of two components: a body with limbs protruding outward and a suit that fits appropriately around it, so that there is no easy way for the suit to be removed from the body. Herein, we report the synthesis and characterization of a suit[3]ane, which contains a benzotrithiophene derivative (THBTT) with three protruding hexyl chains as the body and a 3-fold symmetric, extended pyridinium-based cage, namely, HexaCage6+, as the suit. Central to its realization is effective templation, provided by THBTT during cage formation, an observation that has been supported by the strong binding constant between benzotrithiophene (BTT) and the empty cage. The solid-state structure of the suit[3]ane reveals that the body is confined within the suit's cavity with its alkyl chains protruding outward through the orifices in the cage. Notably, such a seemingly unstable molecule, having three flexible alkyl chains as its only protruding limbs, does not dissociate after prolonged heating in CD3CN at 100 °C under pressure for 7 days. No evidence for guest exchange with the host was observed at this temperature in a 2:1 mixture of THBTT and HexaCage6+ in CD3CN. The results indicate that flexible protruding limbs are sufficient for a suit[3]ane to remain mechanically stable even at high temperatures in solution.
Original language | English (US) |
---|---|
Pages (from-to) | 20152-20160 |
Number of pages | 9 |
Journal | Journal of the American Chemical Society |
Volume | 142 |
Issue number | 47 |
DOIs | |
State | Published - Nov 25 2020 |
Funding
Financial support from Northwestern University is gratefully acknowledged. This work made use of the IMSERC at Northwestern University, which received support from the NIH (1S10OD012016-01/1S10RR019071-01A1), Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205), the State of Illinois, and the International Institute for Nanotechnology (IIN).
ASJC Scopus subject areas
- General Chemistry
- Biochemistry
- Catalysis
- Colloid and Surface Chemistry
Fingerprint
Dive into the research topics of 'Suit[3]ane'. Together they form a unique fingerprint.Datasets
-
CCDC 2045036: Experimental Crystal Structure Determination
Chen, X.-Y. (Contributor), Shen, D. (Contributor), Cai, K. (Contributor), Jiao, Y. (Contributor), Wu, H. (Contributor), Song, B. (Contributor), Zhang, L. (Contributor), Tan, Y. (Contributor), Wang, Y. (Contributor), Feng, Y. (Contributor), Stern, C. L. (Contributor) & Stoddart, J. F. (Contributor), Cambridge Crystallographic Data Centre, 2020
DOI: 10.5517/ccdc.csd.cc26n0xt, http://www.ccdc.cam.ac.uk/services/structure_request?id=doi:10.5517/ccdc.csd.cc26n0xt&sid=DataCite
Dataset
-
CCDC 2045038: Experimental Crystal Structure Determination
Chen, X.-Y. (Contributor), Shen, D. (Contributor), Cai, K. (Contributor), Jiao, Y. (Contributor), Wu, H. (Contributor), Song, B. (Contributor), Zhang, L. (Contributor), Tan, Y. (Contributor), Wang, Y. (Contributor), Feng, Y. (Contributor), Stern, C. L. (Contributor) & Stoddart, J. F. (Contributor), Cambridge Crystallographic Data Centre, 2020
DOI: 10.5517/ccdc.csd.cc26n0zw, http://www.ccdc.cam.ac.uk/services/structure_request?id=doi:10.5517/ccdc.csd.cc26n0zw&sid=DataCite
Dataset
-
CCDC 2045037: Experimental Crystal Structure Determination
Chen, X.-Y. (Contributor), Shen, D. (Contributor), Cai, K. (Contributor), Jiao, Y. (Contributor), Wu, H. (Contributor), Song, B. (Contributor), Zhang, L. (Contributor), Tan, Y. (Contributor), Wang, Y. (Contributor), Feng, Y. (Contributor), Stern, C. L. (Contributor) & Stoddart, J. F. (Contributor), Cambridge Crystallographic Data Centre, 2020
DOI: 10.5517/ccdc.csd.cc26n0yv, http://www.ccdc.cam.ac.uk/services/structure_request?id=doi:10.5517/ccdc.csd.cc26n0yv&sid=DataCite
Dataset