Abstract
Graphs present in many real-world applications, such as financial fraud detection, commercial recommendation, and social network analysis. But given the high cost of graph annotation or labeling, we face a severe graph label-scarcity problem, i.e., a graph might have a few labeled nodes. One example of such a problem is the so-called few-shot node classification. A predominant approach to this problem resorts to episodic meta-learning. In this work, we challenge the status quo by asking a fundamental question whether meta-learning is a must for few-shot node classification tasks. We propose a new and simple framework under the standard few-shot node classification setting as an alternative to meta-learning to learn an effective graph encoder. The framework consists of supervised graph contrastive learning with novel mechanisms for data augmentation, subgraph encoding, and multi-scale contrast on graphs. Extensive experiments on three benchmark datasets (CoraFull, Reddit, Ogbn) show that the new framework significantly outperforms state-of-the-art meta-learning based methods.
Original language | English (US) |
---|---|
Title of host publication | Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2022, Proceedings |
Editors | Massih-Reza Amini, Stéphane Canu, Asja Fischer, Tias Guns, Petra Kralj Novak, Grigorios Tsoumakas |
Publisher | Springer Science and Business Media Deutschland GmbH |
Pages | 394-411 |
Number of pages | 18 |
ISBN (Print) | 9783031263897 |
DOIs | |
State | Published - 2023 |
Event | 22nd Joint European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2022 - Grenoble, France Duration: Sep 19 2022 → Sep 23 2022 |
Publication series
Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volume | 13714 LNAI |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Conference
Conference | 22nd Joint European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2022 |
---|---|
Country/Territory | France |
City | Grenoble |
Period | 9/19/22 → 9/23/22 |
Funding
Acknowledgments. This work is partially supported by Army Research Office (ARO) W911NF2110030 and Army Research Lab (ARL) W911NF2020124.
Keywords
- Few-shot learning
- Graph Neural Networks
- Graph contrastive learning
ASJC Scopus subject areas
- Theoretical Computer Science
- General Computer Science