Supplemental and highly elevated tocopherol doses differentially regulate allergic inflammation

Reversibility of α-tocopherol and γ-tocopherol's effects

Research output: Contribution to journalArticle

36 Citations (Scopus)

Abstract

We have reported that supplemental doses of the α- and γ-tocopherol isoforms of vitamin E decrease and increase, respectively, allergic lung inflammation. We have now assessed whether these effects of tocopherols are reversible. For these studies, mice were treated with Ag and supplemental tocopherols in a first phase of treatment followed by a 4-wk clearance phase, and then the mice received a second phase of Ag and tocopherol treatments. The proinflammatory effects of supplemental levels of γ-tocopherol in phase 1 were only partially reversed by supplemental α-tocopherol in phase 2, but were completely reversed by raising α-tocopherol levels 10-fold in phase 2. When γ-tocopherol levels were increased 10-fold (highly elevated tocopherol) so that the lung tissue γ-tocopherol levels were equal to the lung tissue levels of supplemental α-tocopherol, γ-tocopherol reduced leukocyte numbers in the lung lavage fluid. In contrast to the lung lavage fluid, highly elevated levels of γ-tocopherol increased inflammation in the lung tissue. These regulatory effects of highly elevated tocopherols on tissue inflammation and lung lavage fluid were reversible in a second phase of Ag challenge without tocopherols. In summary, the proinflammatory effects of supplemental γ-tocopherol on lung inflammation were partially reversed by supplemental levels of α-tocopherol but were completely reversed by highly elevated levels of α-tocopherol. Also, highly elevated levels of γ-tocopherol were inhibitory and reversible in lung lavage but, importantly, were proinflammatory in lung tissue sections. These results have implications for future studies with tocopherols and provide a new context in which to review vitamin E studies in the literature.

Original languageEnglish (US)
Pages (from-to)3674-3685
Number of pages12
JournalJournal of Immunology
Volume186
Issue number6
DOIs
StatePublished - Mar 15 2011

Fingerprint

Tocopherols
Inflammation
Bronchoalveolar Lavage Fluid
Pneumonia
Vitamin E
Lung

ASJC Scopus subject areas

  • Immunology

Cite this

@article{b99b804963f84f8a9d8ea868df4d849d,
title = "Supplemental and highly elevated tocopherol doses differentially regulate allergic inflammation: Reversibility of α-tocopherol and γ-tocopherol's effects",
abstract = "We have reported that supplemental doses of the α- and γ-tocopherol isoforms of vitamin E decrease and increase, respectively, allergic lung inflammation. We have now assessed whether these effects of tocopherols are reversible. For these studies, mice were treated with Ag and supplemental tocopherols in a first phase of treatment followed by a 4-wk clearance phase, and then the mice received a second phase of Ag and tocopherol treatments. The proinflammatory effects of supplemental levels of γ-tocopherol in phase 1 were only partially reversed by supplemental α-tocopherol in phase 2, but were completely reversed by raising α-tocopherol levels 10-fold in phase 2. When γ-tocopherol levels were increased 10-fold (highly elevated tocopherol) so that the lung tissue γ-tocopherol levels were equal to the lung tissue levels of supplemental α-tocopherol, γ-tocopherol reduced leukocyte numbers in the lung lavage fluid. In contrast to the lung lavage fluid, highly elevated levels of γ-tocopherol increased inflammation in the lung tissue. These regulatory effects of highly elevated tocopherols on tissue inflammation and lung lavage fluid were reversible in a second phase of Ag challenge without tocopherols. In summary, the proinflammatory effects of supplemental γ-tocopherol on lung inflammation were partially reversed by supplemental levels of α-tocopherol but were completely reversed by highly elevated levels of α-tocopherol. Also, highly elevated levels of γ-tocopherol were inhibitory and reversible in lung lavage but, importantly, were proinflammatory in lung tissue sections. These results have implications for future studies with tocopherols and provide a new context in which to review vitamin E studies in the literature.",
author = "McCary, {Christine A.} and Hiam Abdala-Valencia and Sergejs Berdnikovs and Cook-Mills, {Joan M.}",
year = "2011",
month = "3",
day = "15",
doi = "10.4049/jimmunol.1003037",
language = "English (US)",
volume = "186",
pages = "3674--3685",
journal = "Journal of Immunology",
issn = "0022-1767",
publisher = "American Association of Immunologists",
number = "6",

}

TY - JOUR

T1 - Supplemental and highly elevated tocopherol doses differentially regulate allergic inflammation

T2 - Reversibility of α-tocopherol and γ-tocopherol's effects

AU - McCary, Christine A.

AU - Abdala-Valencia, Hiam

AU - Berdnikovs, Sergejs

AU - Cook-Mills, Joan M.

PY - 2011/3/15

Y1 - 2011/3/15

N2 - We have reported that supplemental doses of the α- and γ-tocopherol isoforms of vitamin E decrease and increase, respectively, allergic lung inflammation. We have now assessed whether these effects of tocopherols are reversible. For these studies, mice were treated with Ag and supplemental tocopherols in a first phase of treatment followed by a 4-wk clearance phase, and then the mice received a second phase of Ag and tocopherol treatments. The proinflammatory effects of supplemental levels of γ-tocopherol in phase 1 were only partially reversed by supplemental α-tocopherol in phase 2, but were completely reversed by raising α-tocopherol levels 10-fold in phase 2. When γ-tocopherol levels were increased 10-fold (highly elevated tocopherol) so that the lung tissue γ-tocopherol levels were equal to the lung tissue levels of supplemental α-tocopherol, γ-tocopherol reduced leukocyte numbers in the lung lavage fluid. In contrast to the lung lavage fluid, highly elevated levels of γ-tocopherol increased inflammation in the lung tissue. These regulatory effects of highly elevated tocopherols on tissue inflammation and lung lavage fluid were reversible in a second phase of Ag challenge without tocopherols. In summary, the proinflammatory effects of supplemental γ-tocopherol on lung inflammation were partially reversed by supplemental levels of α-tocopherol but were completely reversed by highly elevated levels of α-tocopherol. Also, highly elevated levels of γ-tocopherol were inhibitory and reversible in lung lavage but, importantly, were proinflammatory in lung tissue sections. These results have implications for future studies with tocopherols and provide a new context in which to review vitamin E studies in the literature.

AB - We have reported that supplemental doses of the α- and γ-tocopherol isoforms of vitamin E decrease and increase, respectively, allergic lung inflammation. We have now assessed whether these effects of tocopherols are reversible. For these studies, mice were treated with Ag and supplemental tocopherols in a first phase of treatment followed by a 4-wk clearance phase, and then the mice received a second phase of Ag and tocopherol treatments. The proinflammatory effects of supplemental levels of γ-tocopherol in phase 1 were only partially reversed by supplemental α-tocopherol in phase 2, but were completely reversed by raising α-tocopherol levels 10-fold in phase 2. When γ-tocopherol levels were increased 10-fold (highly elevated tocopherol) so that the lung tissue γ-tocopherol levels were equal to the lung tissue levels of supplemental α-tocopherol, γ-tocopherol reduced leukocyte numbers in the lung lavage fluid. In contrast to the lung lavage fluid, highly elevated levels of γ-tocopherol increased inflammation in the lung tissue. These regulatory effects of highly elevated tocopherols on tissue inflammation and lung lavage fluid were reversible in a second phase of Ag challenge without tocopherols. In summary, the proinflammatory effects of supplemental γ-tocopherol on lung inflammation were partially reversed by supplemental levels of α-tocopherol but were completely reversed by highly elevated levels of α-tocopherol. Also, highly elevated levels of γ-tocopherol were inhibitory and reversible in lung lavage but, importantly, were proinflammatory in lung tissue sections. These results have implications for future studies with tocopherols and provide a new context in which to review vitamin E studies in the literature.

UR - http://www.scopus.com/inward/record.url?scp=79953219059&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79953219059&partnerID=8YFLogxK

U2 - 10.4049/jimmunol.1003037

DO - 10.4049/jimmunol.1003037

M3 - Article

VL - 186

SP - 3674

EP - 3685

JO - Journal of Immunology

JF - Journal of Immunology

SN - 0022-1767

IS - 6

ER -