Suppression of hyperpolarization-activated cyclic nucleotide-gated channel function in thalamocortical neurons prevents genetically determined and pharmacologically induced absence seizures

François David*, Nihan Çarçak, Szabina Furdan, Filiz Onat, Timothy Gould, Ádám Mészáros, Giuseppe Di Giovanni, Vivian M. Hernández, C. Savio Chan, Magor L. Lőrincz, Vincenzo Crunelli

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and the Ih current they generate contribute to the pathophysiological mechanisms of absence seizures (ASs), but their precise role in neocortical and thalamic neuronal populations, the main components of the network underlying AS generation, remains controversial. In diverse genetic AS models, Ih amplitude is smaller in neocortical neurons and either larger or unchanged in thalamocortical (TC) neurons compared with nonepileptic strains. A lower expression of neocortical HCN subtype 1 channels is present in genetic AS-prone rats, and HCN subtype 2 knock-out mice exhibit ASs. Furthermore, whereas many studies have characterized Ih contribution to “absence-like” paroxysmal activity in vitro, no data are available on the specific role of cortical and thalamic HCN channels in behavioral seizures. Here, we show that the pharmacological block of HCN channels with the antagonist ZD7288 applied via reverse microdialysis in the ventrobasal thalamus (VB) of freely moving male Genetic Absence Epilepsy Rats from Strasbourg decreases TC neuron firing and abolishes spontaneous ASs. A similar effect is observed on γ-hydroxybutyric acid-elicited ASs in normal male Wistar rats. Moreover, thalamic knockdown of HCN channels via virally delivered shRNA into the VB of male Stargazer mice, another genetic AS model, decreases spontaneous ASs and Ih-dependent electrophysiological properties of VB TC neurons. These findings provide the first evidence that block of TC neuron HCN channels prevents ASs and suggest that any potential anti-absence therapy that targets HCN channels should carefully consider the opposite role for cortical and thalamic Ih in the modulation of absence seizures.

Original languageEnglish (US)
Pages (from-to)6615-6627
Number of pages13
JournalJournal of Neuroscience
Volume38
Issue number30
DOIs
StatePublished - Jul 25 2018

Keywords

  • Absence epilepsy
  • Channelopathy
  • HCN channels
  • Thalamocortical rhythms
  • Thalamus

ASJC Scopus subject areas

  • Neuroscience(all)

Fingerprint Dive into the research topics of 'Suppression of hyperpolarization-activated cyclic nucleotide-gated channel function in thalamocortical neurons prevents genetically determined and pharmacologically induced absence seizures'. Together they form a unique fingerprint.

Cite this