Suppressive Role of Indole on 2-Acetylaminofluorene Hepatotoxicity

Martin L. Hopp, Michio Matsumoto, Benjamin Wendell, Chung Lee, Ryoichi Oyasu

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Indole is known to suppress the hepatotoxicity and carcinogenicity of 2-acetylaminofluorene (AAF) in rats and hamsters. For elucidation of the mechanism of its protective role, 2 experiments were conducted using young male rats. In the 1st experiment, the 24-hr biliary excretion of N-hydroxy-2-acetylaminofluorene (N-OH-AAF)-glucuronide was measured after 2 and 4 weeks of dietary administration of 0.03% AAF with or without 1.6% indole. The amount of [9-,4C]N-OH-AAF that was excreted as the glucuronide following a single i.p. injection of [9-14C]AAF was lower after 2 weeks in animals fed AAF and indole, as compared to those fed AAF alone [1.5 ± 1.2% versus 19.6 ± 3.6% S.E. (p < 0.001)]. After 4 weeks of AAF administration without indole, the biliary excretion fell to 4.8 ± 2.1%. This was also significantly higher than that of the animals fed both AAF and indole [1.8 ± 1.2% (p < 0.025)]. The suppressive role of indole on the conjugate excretion was also reflected in a decreased biliary excretion of all [9-14C]AAF metabolites in animals treated with indole alone. In the 2nd experiment, the protective action of indole was assessed by survival following daily i.p. injections of N-OH-AAF and Na2SO4solution. Na2SO4increased the hepatotoxicity of N-OH-AAF. Indole suppressed the toxicity of N-OH-AAF even in the presence of Na2SO4. This protective role of indole was partially overcome only when excess sulfate was coadministered. These results indicate that indole suppresses the biliary excretion of the O-glucuronide of N-OH-AAF during the initial exposure of the animal to the carcinogen, possibly reflecting decreased N-OH-AAF formation. Indole also modifies the metabolism of AAF following N-hydroxylation, perhaps activating N-OH-AAF, depending upon the concentration of sulfate available.

Original languageEnglish (US)
Pages (from-to)234-239
Number of pages6
JournalCancer Research
Volume36
Issue number1
StatePublished - Jan 1 1976

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Fingerprint

Dive into the research topics of 'Suppressive Role of Indole on 2-Acetylaminofluorene Hepatotoxicity'. Together they form a unique fingerprint.

Cite this