TY - CHAP

T1 - Symmetry Arguments in Probability

AU - Zabell, Sandy L

PY - 2016

Y1 - 2016

N2 - The history of the use of symmetry arguments in probability theory is traced. After a brief consideration of why these did not occur in ancient Greece, the use of symmetry in probability, starting in the 17th century, is considered. Some of the contributions of Bernoulli, Bayes, Laplace, W. E. Johnson, and Bruno de Finetti are described. One important thread here is the progressive move from using symmetry to identify a single, unique probability function to using it instead to narrow the possibilities to a family of candidate functions via the qualitative concept of exchangeability. A number of modern developments are then discussed: partial exchangeability, the sampling of species problem, and Jeffrey conditioning. Finally, the use or misuse of seemingly innocent symmetry assumptions is illustrated, using a number of apparent paradoxes that have been widely discussed.

AB - The history of the use of symmetry arguments in probability theory is traced. After a brief consideration of why these did not occur in ancient Greece, the use of symmetry in probability, starting in the 17th century, is considered. Some of the contributions of Bernoulli, Bayes, Laplace, W. E. Johnson, and Bruno de Finetti are described. One important thread here is the progressive move from using symmetry to identify a single, unique probability function to using it instead to narrow the possibilities to a family of candidate functions via the qualitative concept of exchangeability. A number of modern developments are then discussed: partial exchangeability, the sampling of species problem, and Jeffrey conditioning. Finally, the use or misuse of seemingly innocent symmetry assumptions is illustrated, using a number of apparent paradoxes that have been widely discussed.

U2 - 10.1093/oxfordhb/9780199607617.013.15

DO - 10.1093/oxfordhb/9780199607617.013.15

M3 - Entry for encyclopedia/dictionary

SN - 978-0199607617

T3 - Oxford Handbooks

BT - The Oxford Handbook of Probability and Philosophy

A2 - Hájek, Alan

A2 - Hitchcock, Christopher

PB - Oxford University Press

ER -