Abstract
Rodent HCC rat models provide advantages for interventional oncology (IO) based immunotherapy research compared to other established larger animal models or mice models. Rapid and predictable tumor growth and affordable costs permit the formation of a compelling preclinical model investigating novel IO catheter-directed therapies and local ablation therapies. Among orthotopic HCC models, the N1-S1 orthotopic HCC model has been involved in many research cases. Suboptimal tumor induction rates and potential spontaneous regression during tumor implantation procedures discouraged the use of the N1-S1 HCC model in IO-based immunotherapies. Here, N1-S1 HCC models were generated with a subcapsular implantation of two different number of N1-S1 cells using a mini-laporatomy. Tumor growth assay and immunological profiles which can preclinically evaluate the therapeutic efficacy of IO-based immunotherapy, were characterized. Finally, an N1-S1 HCC rat model generated with the proposed procedure demonstrated a representative immune suppressive HCC tumor environment without self-tumor regression. The optimized syngeneic N1-S1 HCC rat models represent an essential tool for pre-clinical evaluation of new IO immunotherapies for the treatment of HCC.
Original language | English (US) |
---|---|
Article number | 913 |
Journal | Cancers |
Volume | 15 |
Issue number | 3 |
DOIs | |
State | Published - Feb 2023 |
Funding
This work was supported by the National Cancer Institute and National Institute of Biomedical Imaging and Bioengineering. This work was also supported by the Center for Translational Imaging and Mouse Histology and Phenotyping Laboratory at Northwestern University. Illustrations were originally created by authors through BioRender.com (accessed on 1 May 2022).
Keywords
- cancer immunotherapy
- hepatocellular carcinoma (HCC)
- interventional oncology
- rodent HCC animal model
ASJC Scopus subject areas
- Oncology
- Cancer Research