TY - JOUR
T1 - Syntheses and structures of the quaternary copper tellurides K3Ln4Cu5Te10 (Ln = Sm, Gd, Er), Rb3Ln4Cu5Te10 (Ln = Nd, Gd), and Cs3Gd4Cu5Te10
AU - Huang, Fu Qiang
AU - Ibers, James A.
N1 - Funding Information:
This research was supported by NSF Grant DMR00-96676. This work made use of facilities supported by the MRSEC program of the National Science Foundation (DMR00-76097) at the Materials Research Center of Northwestern University.
PY - 2001
Y1 - 2001
N2 - Six quaternary alkali-metal rare-earth copper tellurides K3Ln4Cu5Te10 (Ln=Sm, Gd, Er), Rb3Ln4Cu5Te10 (Ln=Nd, Gd), and Cs3Gd4Cu5Te10 have been synthesized at 1123 K with the use of reactive fluxes of alkali-metal halides ACl (A=K, Rb, Cs). All crystallographic data were collected at 153 K. These compounds crystallize in space group Pnnm of the orthorhombic system with two formula units in cells of dimensions (A3Ln4, a, b, c (Å)): K3Sm4, 16.590(2), 17.877(2), 4.3516(5); K3Gd4, 16.552(4), 17.767(4), 4.3294(9); K3Er4, 16.460(4), 17.550(4), 4.2926(9); Rb3Nd4, 17.356(1), 17.820(1), 4.3811(3); Rb3Gd4, 17.201(2), 17.586(2), 4.3429(6); Cs3Gd4, 17.512(1), 17.764(1), 4.3697(3). The corresponding R1 indices for the refined structures are 0.0346, 0.0315, 0.0212, 0.0268, 0.0289, and 0.0411. The three K3Ln4Cu5Te10 structures belong to one structure type and the Rb3Ln4Cu5Te10 (Ln=Nd, Gd) and Cs3Gd4Cu5Te10 structures belong to another one, the difference being the location of one of the three unique Cu atoms. Both structure types are three-dimensional tunnel structures that contain similar Ln/Te fragments built from LnTe6 octahedra and CuTe4 tetrahedra. The CuTe4 tetrahedra form ∞1[CuTe35-] and ∞1[CuTe23-] chains. The alkali-metal atoms, which are in the tunnels, are coordinated to seven or eight Te atoms.
AB - Six quaternary alkali-metal rare-earth copper tellurides K3Ln4Cu5Te10 (Ln=Sm, Gd, Er), Rb3Ln4Cu5Te10 (Ln=Nd, Gd), and Cs3Gd4Cu5Te10 have been synthesized at 1123 K with the use of reactive fluxes of alkali-metal halides ACl (A=K, Rb, Cs). All crystallographic data were collected at 153 K. These compounds crystallize in space group Pnnm of the orthorhombic system with two formula units in cells of dimensions (A3Ln4, a, b, c (Å)): K3Sm4, 16.590(2), 17.877(2), 4.3516(5); K3Gd4, 16.552(4), 17.767(4), 4.3294(9); K3Er4, 16.460(4), 17.550(4), 4.2926(9); Rb3Nd4, 17.356(1), 17.820(1), 4.3811(3); Rb3Gd4, 17.201(2), 17.586(2), 4.3429(6); Cs3Gd4, 17.512(1), 17.764(1), 4.3697(3). The corresponding R1 indices for the refined structures are 0.0346, 0.0315, 0.0212, 0.0268, 0.0289, and 0.0411. The three K3Ln4Cu5Te10 structures belong to one structure type and the Rb3Ln4Cu5Te10 (Ln=Nd, Gd) and Cs3Gd4Cu5Te10 structures belong to another one, the difference being the location of one of the three unique Cu atoms. Both structure types are three-dimensional tunnel structures that contain similar Ln/Te fragments built from LnTe6 octahedra and CuTe4 tetrahedra. The CuTe4 tetrahedra form ∞1[CuTe35-] and ∞1[CuTe23-] chains. The alkali-metal atoms, which are in the tunnels, are coordinated to seven or eight Te atoms.
UR - http://www.scopus.com/inward/record.url?scp=0034799028&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034799028&partnerID=8YFLogxK
U2 - 10.1006/jssc.2001.9256
DO - 10.1006/jssc.2001.9256
M3 - Article
AN - SCOPUS:0034799028
SN - 0022-4596
VL - 160
SP - 409
EP - 414
JO - Journal of Solid State Chemistry
JF - Journal of Solid State Chemistry
IS - 2
ER -