Synthesis of Cyclic Megamolecules

Justin A. Modica, Yao Lin, Milan Mrksich*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

This paper describes the synthesis of giant cyclic molecules having diameters of 10-20 nm. The molecules are prepared through the reactions of a fusion protein building block with small molecule linkers that are terminated in irreversible inhibitors of enzyme domains present in the fusion. This building block has N-terminal cutinase and C-terminal SnapTag domains that react irreversibly with p-nitrophenyl phosphonate (pNPP) and benzylguanine (BG) groups, respectively. We use a bis-BG and a BG-pNPP linker to join these fusion proteins into linear structures that can then react with a bis-pNPP linker that joins the ends into a cyclic product. The last step can occur intramolecularly, to give the macrocycle, or intermolecularly with another equivalent of linker, to give a linear product. Because these are coupled first- and second-order processes, an analysis of product yields from reactions performed at a range of linker concentrations gives rate constants for cyclization. We determined these to be 9.7 × 10-3 s-1, 2.3 × 10-3 s-1, and 8.1 × 10-4 s-1 for the dimer, tetramer, and hexamer, respectively. This work demonstrates an efficient route to cyclic macromolecules having nanoscale dimensions and provides new scaffolds that can be generated using the megamolecule approach.

Original languageEnglish (US)
Pages (from-to)6391-6399
Number of pages9
JournalJournal of the American Chemical Society
Volume140
Issue number20
DOIs
StatePublished - May 23 2018

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Synthesis of Cyclic Megamolecules'. Together they form a unique fingerprint.

Cite this