TY - CHAP
T1 - Synthesis, Processing, and Manufacturing of Components, Devices, and Systems
AU - Mirkin, Chad A
AU - Mark, Tuominen
PY - 2011
Y1 - 2011
N2 - The last decade has been an exciting period of discovery in the synthesis and processing of nanostructures. Many new nanomaterials have emerged, along with new fabrication processes to generate them. The last decade has seen penetration of nanotechnology into almost every area and discipline in science and engineering. Nanotechnology has been used in commercial products, including nanostructured coatings, cosmetics, textiles and magnetic storage devices, among many others. While such products mark much more purpose-oriented use and application of nanostructures, there also has been important basic research concerning the toolkits for synthesis, fabrication, and patterning of nanostructures, in addition to bioinspired synthesis and directed self-assembly. Many of these advances show great promise for the development of new nanomanufacturing processes that will drive the creation of future nanosystems and devices. For example, the last ten years have seen the development of novel synthesis approaches for a range of nanoscale materials including aerosols, colloids, thin-films, nanocrystalline metals, ceramics, biomaterials, and nanoporous or nanocomposite structures. Importantly, several of these methodologies have improved upon industrially-relevant practices such as combustion, electrophoretic processes, electrodeposition, electrospinning, anodization, and sputtering. Over the same period of time, entirely new nanostructures, such as graphene, have been identified and their unique properties may lead to important technology advances.
AB - The last decade has been an exciting period of discovery in the synthesis and processing of nanostructures. Many new nanomaterials have emerged, along with new fabrication processes to generate them. The last decade has seen penetration of nanotechnology into almost every area and discipline in science and engineering. Nanotechnology has been used in commercial products, including nanostructured coatings, cosmetics, textiles and magnetic storage devices, among many others. While such products mark much more purpose-oriented use and application of nanostructures, there also has been important basic research concerning the toolkits for synthesis, fabrication, and patterning of nanostructures, in addition to bioinspired synthesis and directed self-assembly. Many of these advances show great promise for the development of new nanomanufacturing processes that will drive the creation of future nanosystems and devices. For example, the last ten years have seen the development of novel synthesis approaches for a range of nanoscale materials including aerosols, colloids, thin-films, nanocrystalline metals, ceramics, biomaterials, and nanoporous or nanocomposite structures. Importantly, several of these methodologies have improved upon industrially-relevant practices such as combustion, electrophoretic processes, electrodeposition, electrospinning, anodization, and sputtering. Over the same period of time, entirely new nanostructures, such as graphene, have been identified and their unique properties may lead to important technology advances.
M3 - Chapter
SN - 978-94-007-1167-9
T3 - Science Policy Reports
SP - 109
EP - 158
BT - Nanotechnology Research Directions for Societal Needs in 2020
PB - Springer Netherlands
ER -