Synthesizing designs with inter-part dependencies using hierarchical generative adversarial networks

Wei Chen*, Ashwin Jeyaseelan, Mark Fuge

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

Real-world designs usually consist of parts with hierarchical dependencies, i.e., the geometry of one component (a child shape) is dependent on another (a parent shape). We propose a method for synthesizing this type of design. It decomposes the problem of synthesizing the whole design into synthesizing each component separately but keeping the inter-component dependencies satisfied. This method constructs a two-level generative adversarial network to train two generative models for parent and child shapes, respectively. We then use the trained generative models to synthesize or explore parent and child shapes separately via a parent latent representation and infinite child latent representations, each conditioned on a parent shape. We evaluate and discuss the disentanglement and consistency of latent representations obtained by this method. We show that shapes change consistently along any direction in the latent space. This property is desirable for design exploration over the latent space.

Original languageEnglish (US)
Title of host publication44th Design Automation Conference
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791851753
DOIs
StatePublished - 2018
EventASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2018 - Quebec City, Canada
Duration: Aug 26 2018Aug 29 2018

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume2A-2018

Other

OtherASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2018
CountryCanada
CityQuebec City
Period8/26/188/29/18

ASJC Scopus subject areas

  • Mechanical Engineering
  • Computer Graphics and Computer-Aided Design
  • Computer Science Applications
  • Modeling and Simulation

Fingerprint Dive into the research topics of 'Synthesizing designs with inter-part dependencies using hierarchical generative adversarial networks'. Together they form a unique fingerprint.

Cite this