Systematically Controlling Acceptor Fluorination Optimizes Hierarchical Morphology, Vertical Phase Separation, and Efficiency in Non-Fullerene Organic Solar Cells

Xiaohua Zhang, Guoping Li, Subhrangsu Mukherjee, Wei Huang, Ding Zheng, Liang Wen Feng, Yao Chen, Jianglin Wu, Vinod K. Sangwan, Mark C. Hersam, Dean M. DeLongchamp, Junsheng Yu*, Antonio Facchetti, Tobin J. Marks

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Non-fullerene acceptor (NFA) end group (EG) functionalization, especially by fluorination, affects not only the energetics but also the morphology of bulk-heterojunction (BHJ) organic solar cell (OSC) active layers, thereby influencing the power conversion efficiency (PCE) and other metrics of NFA-based OSCs. However, a quantitative understanding of how varying the degrees of NFA fluorination influence the blend morphological and photovoltaic properties remains elusive. Here a series of three A-DAD-A type NFAs (D = π-donor group and A = π-acceptor EG) which systematically increase the degree of EG fluorination and comprehensively investigate the resulting blends with the polymer donor PM6 in terms of optical properties, electronic structure, film crystallinity, charge carrier transport, and OSC performance is reported. The results indicate that the most highly fluorinated NFA, BT-BO-L4F, achieves an optimal BHJ hierarchical morphology where enhanced NFA molecule intermolecular π–π stacking and optimal vertical phase gradation are achieved in the BHJ blend. These factors also promote optimum NFA-cathode contact, more balanced electron and hole mobility, and suppress both monomolecular and bimolecular recombination. As a result, both the short-circuit current density and fill factor in this OSC series progressively increase with increasing EG fluorine density, and the resulting PCEs increase from 9 to 16.8%.

Original languageEnglish (US)
Article number2102172
JournalAdvanced Energy Materials
Volume12
Issue number1
DOIs
StatePublished - Jan 6 2022

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Materials Science(all)

Fingerprint

Dive into the research topics of 'Systematically Controlling Acceptor Fluorination Optimizes Hierarchical Morphology, Vertical Phase Separation, and Efficiency in Non-Fullerene Organic Solar Cells'. Together they form a unique fingerprint.

Cite this