Systems analysis of the CO2 concentrating mechanism in cyanobacteria

Niall Mangan, Michael Brenner

Research output: Contribution to journalArticlepeer-review

33 Scopus citations

Abstract

Cyanobacteria are photosynthetic bacteria with a unique CO2 concentrating mechanism (CCM), enhancing carbon fixation. Understanding the CCM requires a systems level perspective of how molecular components work together to enhance CO2 fixation. We present a mathematical model of the cyanobacterial CCM, giving the parameter regime (expression levels, catalytic rates, permeability of carboxysome shell) for efficient carbon fixation. Efficiency requires saturating the RuBisCO reaction, staying below saturation for carbonic anhydrase, and avoiding wasteful oxygenation reactions. We find selectivity at the carboxysome shell is not necessary; there is an optimal non-specific carboxysome shell permeability. We compare the efficacy of facilitated CO2 uptake, CO2 scavenging, and HCO-3 transport with varying external pH. At the optimal carboxysome permeability, contributions from CO2 scavenging at the cell membrane are small. We examine the cumulative benefits of CCM spatial organization strategies: enzyme co-localization and compartmentalization.

Original languageEnglish (US)
Article numbere02043
JournaleLife
Volume2014
Issue number3
DOIs
StatePublished - Apr 29 2014

ASJC Scopus subject areas

  • Neuroscience(all)
  • Immunology and Microbiology(all)
  • Biochemistry, Genetics and Molecular Biology(all)

Fingerprint Dive into the research topics of 'Systems analysis of the CO<sub>2</sub> concentrating mechanism in cyanobacteria'. Together they form a unique fingerprint.

Cite this