TY - JOUR
T1 - Szegő kernels and Poincaré series
AU - Lu, Zhiqin
AU - Zelditch, Steve
N1 - Publisher Copyright:
© 2016, Hebrew University Magnes Press.
PY - 2016/11/1
Y1 - 2016/11/1
N2 - Let M= M˜ / Γ be a Kähler manifold, where Γ ~ π1(M) and M˜ is the universal Kähler cover. Let (L, h) → M be a positive hermitian holomorphic line bundle. We first prove that the L2 Szegő projector Π˜ N for L2-holomorphic sections on the lifted bundle L˜ N is related to the Szegő projector for H0(M, LN) by Π^ N(x, y) = ∑ γ ∈ ΓΠ^ ˜ N(γ⋅ x, y). We then apply this result to give a simple proof of Napier’s theorem on the holomorphic convexity of M˜ with respect to L˜ N and to surjectivity of Poincaré series.
AB - Let M= M˜ / Γ be a Kähler manifold, where Γ ~ π1(M) and M˜ is the universal Kähler cover. Let (L, h) → M be a positive hermitian holomorphic line bundle. We first prove that the L2 Szegő projector Π˜ N for L2-holomorphic sections on the lifted bundle L˜ N is related to the Szegő projector for H0(M, LN) by Π^ N(x, y) = ∑ γ ∈ ΓΠ^ ˜ N(γ⋅ x, y). We then apply this result to give a simple proof of Napier’s theorem on the holomorphic convexity of M˜ with respect to L˜ N and to surjectivity of Poincaré series.
UR - http://www.scopus.com/inward/record.url?scp=84996528985&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84996528985&partnerID=8YFLogxK
U2 - 10.1007/s11854-016-0033-9
DO - 10.1007/s11854-016-0033-9
M3 - Article
AN - SCOPUS:84996528985
SN - 0021-7670
VL - 130
SP - 167
EP - 184
JO - Journal d'Analyse Mathematique
JF - Journal d'Analyse Mathematique
IS - 1
ER -