Abstract
Perihaematomal oedema (PHO) is an important pathophysiological marker of secondary injury in intracerebral haemorrhage (ICH). In this Review, we describe a novel method to conceptualize PHO formation within the framework of Starling's principle of movement of fluid across a capillary wall. We consider progression of PHO through three stages, characterized by ionic oedema (stage 1) and progressive vasogenic oedema (stages 2 and 3). In this context, possible modifiers of PHO volume and their value in identifying patients who would benefit from therapies that target secondary injury are discussed; the practicalities of using neuroimaging to measure PHO volume are also considered. We examine whether PHO can be used as a predictor of neurological outcome following ICH, and we provide an overview of emerging therapies. Our discussion emphasizes that PHO has clinical relevance both as a therapeutic target, owing to its augmentation of the mass effect of a haemorrhage, and as a surrogate marker for novel interventions that target secondary injury.
Original language | English (US) |
---|---|
Pages (from-to) | 111-122 |
Number of pages | 12 |
Journal | Nature Reviews Neurology |
Volume | 11 |
Issue number | 2 |
DOIs | |
State | Published - Jan 1 2015 |
Funding
S.U. is supported by the Leon Rosenberg, MD Medical Student Research Fund in Genetics (Yale University School of Medicine) and a 2014 Student Scholarship in Cerebrovascular Disease and Stroke (American Heart Association Stroke Council). L.A.B. is supported by the National Institute of Neurological Disorders and Stroke (NINDS; K12‑NS049453). J.M.S. is supported by grants from the Department of Veterans Affairs (Baltimore; BX001629), the NINDS (NS060801, NS061808), and the National Heart, Lung and Blood Institute (HL082517).
ASJC Scopus subject areas
- Clinical Neurology
- Cellular and Molecular Neuroscience