TY - GEN
T1 - Task directionality impacts the ability of individuals with chronic hemiparetic stroke to match torques between arms
T2 - 2017 International Conference on Rehabilitation Robotics, ICORR 2017
AU - Van Der Helm, Nina A.
AU - Gurari, Netta
AU - Drogos, Justin M.
AU - Dewald, Julius P.A.
N1 - Publisher Copyright:
© 2017 IEEE.
PY - 2017/8/11
Y1 - 2017/8/11
N2 - Post hemiparetic stroke an individual may face difficulty performing bimanual tasks due to an asymmetry in their arms' strengths. Here, we determined whether participants with a strength asymmetry were impaired bi-directionally when matching torques between arms (i.e., paretic arm matches non-paretic arm, non-paretic arm matches paretic arm). Six participants with chronic hemiparetic stroke and four participants without neurological impairments partook in this study. First, we identified the maximum voluntary torque that participants could generate about each elbow joint (τmvt). Then, we determined how accurately and precisely participants could match, bidirectionally, submaximal isometric flexion torques (0.25 · τMVT:Reference) between arms. Results demonstrate that task directionality impacted the ability of our participants with stroke who had a strength asymmetry to match torques between arms; specifically, participants were unimpaired matching to a referenced non-paretic arm yet impaired in the opposite direction. Additionally, results reveal that the degree to which participants overshot the target torque when matching with their non-paretic arm could be predicted based on their strength asymmetry (R2Adjusted = 0.67). We propose that individuals with stroke may avoid torque matching impairments during bimanual tasks by matching their paretic arm to their non-paretic arm.
AB - Post hemiparetic stroke an individual may face difficulty performing bimanual tasks due to an asymmetry in their arms' strengths. Here, we determined whether participants with a strength asymmetry were impaired bi-directionally when matching torques between arms (i.e., paretic arm matches non-paretic arm, non-paretic arm matches paretic arm). Six participants with chronic hemiparetic stroke and four participants without neurological impairments partook in this study. First, we identified the maximum voluntary torque that participants could generate about each elbow joint (τmvt). Then, we determined how accurately and precisely participants could match, bidirectionally, submaximal isometric flexion torques (0.25 · τMVT:Reference) between arms. Results demonstrate that task directionality impacted the ability of our participants with stroke who had a strength asymmetry to match torques between arms; specifically, participants were unimpaired matching to a referenced non-paretic arm yet impaired in the opposite direction. Additionally, results reveal that the degree to which participants overshot the target torque when matching with their non-paretic arm could be predicted based on their strength asymmetry (R2Adjusted = 0.67). We propose that individuals with stroke may avoid torque matching impairments during bimanual tasks by matching their paretic arm to their non-paretic arm.
UR - http://www.scopus.com/inward/record.url?scp=85034807540&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85034807540&partnerID=8YFLogxK
U2 - 10.1109/ICORR.2017.8009332
DO - 10.1109/ICORR.2017.8009332
M3 - Conference contribution
C2 - 28813904
AN - SCOPUS:85034807540
T3 - IEEE International Conference on Rehabilitation Robotics
SP - 714
EP - 719
BT - 2017 International Conference on Rehabilitation Robotics, ICORR 2017
A2 - Ajoudani, Arash
A2 - Artemiadis, Panagiotis
A2 - Beckerle, Philipp
A2 - Grioli, Giorgio
A2 - Lambercy, Olivier
A2 - Mombaur, Katja
A2 - Novak, Domen
A2 - Rauter, Georg
A2 - Rodriguez Guerrero, Carlos
A2 - Salvietti, Gionata
A2 - Amirabdollahian, Farshid
A2 - Balasubramanian, Sivakumar
A2 - Castellini, Claudio
A2 - Di Pino, Giovanni
A2 - Guo, Zhao
A2 - Hughes, Charmayne
A2 - Iida, Fumiya
A2 - Lenzi, Tommaso
A2 - Ruffaldi, Emanuele
A2 - Sergi, Fabrizio
A2 - Soh, Gim Song
A2 - Caimmi, Marco
A2 - Cappello, Leonardo
A2 - Carloni, Raffaella
A2 - Carlson, Tom
A2 - Casadio, Maura
A2 - Coscia, Martina
A2 - De Santis, Dalia
A2 - Forner-Cordero, Arturo
A2 - Howard, Matthew
A2 - Piovesan, Davide
A2 - Siqueira, Adriano
A2 - Sup, Frank
A2 - Lorenzo, Masia
A2 - Catalano, Manuel Giuseppe
A2 - Lee, Hyunglae
A2 - Menon, Carlo
A2 - Raspopovic, Stanisa
A2 - Rastgaar, Mo
A2 - Ronsse, Renaud
A2 - van Asseldonk, Edwin
A2 - Vanderborght, Bram
A2 - Venkadesan, Madhusudhan
A2 - Bianchi, Matteo
A2 - Braun, David
A2 - Godfrey, Sasha Blue
A2 - Mastrogiovanni, Fulvio
A2 - McDaid, Andrew
A2 - Rossi, Stefano
A2 - Zenzeri, Jacopo
A2 - Formica, Domenico
A2 - Karavas, Nikolaos
A2 - Marchal-Crespo, Laura
A2 - Reed, Kyle B.
A2 - Tagliamonte, Nevio Luigi
A2 - Burdet, Etienne
A2 - Basteris, Angelo
A2 - Campolo, Domenico
A2 - Deshpande, Ashish
A2 - Dubey, Venketesh
A2 - Hussain, Asif
A2 - Sanguineti, Vittorio
A2 - Unal, Ramazan
A2 - Caurin, Glauco Augusto de Paula
A2 - Koike, Yasuharu
A2 - Mazzoleni, Stefano
A2 - Park, Hyung-Soon
A2 - Remy, C. David
A2 - Saint-Bauzel, Ludovic
A2 - Tsagarakis, Nikos
A2 - Veneman, Jan
A2 - Zhang, Wenlong
PB - IEEE Computer Society
Y2 - 17 July 2017 through 20 July 2017
ER -