Task independent identification of sensor location on upper limb from orientation data

S. Lambrecht, J. P. Romero, J. Benito-León, E. Rocon, Jose L Pons

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

In this paper we describe a novel method for sensor placement identification, and demonstrate the effectiveness of this method on an upper limb neuroprothesis for tremor suppression under a variety of tasks. Our objective is to facilitate long-term tremor monitoring; tremor is the most prevalent movement disorder. Two assumptions are made: 1) movement and tremor demonstrate an additive effect further down the kinematic chain; 2) most applications have chained or fixed sensor locations. These assumptions justify obtaining absolute location through identifying relative location and thus to allow us to simplify the classification algorithm. Seventeen tasks were performed by patients suffering from essential tremor or Parkinson's disease. Ten features were found that resulted in 98.30% average accuracy (min: 92.31%; max: 100%) for the best configuration, irrespective of the task being performed. The method presented here is an important step towards more user-friendly and context-aware neuroprostheses for tremor suppression and monitoring, and facilitates the use of wearable sensors by non-trained personnel.

Original languageEnglish (US)
Title of host publication2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6627-6630
Number of pages4
ISBN (Electronic)9781424479290
DOIs
StatePublished - Nov 2 2014
Event2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014 - Chicago, United States
Duration: Aug 26 2014Aug 30 2014

Publication series

Name2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014

Other

Other2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
CountryUnited States
CityChicago
Period8/26/148/30/14

ASJC Scopus subject areas

  • Health Informatics
  • Computer Science Applications
  • Biomedical Engineering
  • Medicine(all)

Fingerprint Dive into the research topics of 'Task independent identification of sensor location on upper limb from orientation data'. Together they form a unique fingerprint.

  • Cite this

    Lambrecht, S., Romero, J. P., Benito-León, J., Rocon, E., & Pons, J. L. (2014). Task independent identification of sensor location on upper limb from orientation data. In 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014 (pp. 6627-6630). [6945147] (2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/EMBC.2014.6945147