Taxol1 production in nodule cultures of Taxus

D. D. Ellis*, E. L. Zeldin, M. Brodhagen, W. A. Russin, B. H. McCown

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

36 Scopus citations


The in vitro synthesis of secondary compounds from plants is one source of scarce and valuable phytopharmaceuticals. Often, some level of cellular or tissue differentiation is needed for the biosynthesis of many of these important compounds. Nodule cultures, consisting of cohesive multicellular units displaying a high degree of differentiation, were initiated from cultured needles of seven Taxus cultivars (Taxus cuspidata, Taxus x media 'Hicksii', Taxus x hunnewelliana 'Richard Horsey', Taxus x media 'Dark Green Spreader', Taxus x media 'L. C. Bobbick', and Taxus brevifolia). Under normal semicontinuous perfusion culture conditions (bimonthly refreshments to yield 0.2% sucrose), only trace amounts of taxol were detected from Taxus nodule cultures. However, with an elevated sucrose level (0.5% or 1.0%), taxol production was enhanced in T. cuspidata nodules to approximately 12 μg taxol/g nodule dry weight (dw). Stimulation of taxol production by elevated sucrose levels occurred even in the absence of other nutrients. The effect of increased sucrose on taxol induction does not appear to be due to an osmotic effect in the medium, suggesting that the increase in taxol production may be correlated with a metabolic process within the nodules. Although sucrose had a significant effect on taxol production, taxane precursors or elicitors of terpenes, as well as other plant secondary metabolites, had no effect on the production of taxol from these cultures. In addition to taxol, the higher sucrose levels also induced the production of 7-epi-10-deacetyltaxol, cephalomannine, and 7-epi-10-deacetylcephalomannine, so that total content of these taxanes equaled approximately 39 μg taxane/g dw nodules.

Original languageEnglish (US)
Pages (from-to)246-250
Number of pages5
JournalJournal of Natural Products
Issue number3
StatePublished - Mar 1 1996

ASJC Scopus subject areas

  • Analytical Chemistry
  • Molecular Medicine
  • Pharmacology
  • Pharmaceutical Science
  • Drug Discovery
  • Complementary and alternative medicine
  • Organic Chemistry

Fingerprint Dive into the research topics of 'Taxol<sup>1</sup> production in nodule cultures of Taxus'. Together they form a unique fingerprint.

Cite this