TY - JOUR
T1 - Template-directed synthesis of multiply mechanically interlocked molecules under thermodynamic control
AU - Aricó, Fabio
AU - Chang, Theresa
AU - Cantrill, Stuart J.
AU - Khan, Saeed I.
AU - Stoddart, J. Fraser
PY - 2005/8/5
Y1 - 2005/8/5
N2 - The template-directed construction of crown-ether-like macrocycles around secondary dialkylammonium ions (R2NH2+) has been utilized for the expedient (one-pot) and high-yielding synthesis of a diverse range of mechanically interlocked molecules. The clipping together of appropriately designed dialdehyde and diamine compounds around R 2NH2+-containing dumbbell-shaped components proceeds through the formation, under thermodynamic control, of imine bonds. The reversible nature of this particular reaction confers the benefits of "error-checking" and "proof-reading", which one usually associates with supramolecular chemistry and strict self-assembly processes, upon these wholly molecular systems. Furthermore, these dynamic covalent syntheses exploit the efficient templating effects that the R2NH 2+ ions exert on the macrocyclization of the matched dialdehyde and diamine fragments, resulting not only in rapid rates of reaction, but also affording near-quantitative conversion of starting materials into the desired interlocked products. Once assembled, these "dynamic" interlocked compounds can be "fixed" upon reduction of the reversible imine bonds (by using BH3·THF) to give kinetically stable species, a procedure that can be performed in the same reaction vessel as the inital thermodynamically controlled assembly. Isolation and purification of the mechanically interlocked products formed by using this protocol is relatively facile, as no column chromatography is required. Herein, we present the synthesis and characterization of 1) a [2]rotaxane, 2) a [3]rotaxane, 3) a branched [4]rotaxane, 4) a bis [2]rotaxane, and 5) a novel cyclic [4]rotaxane, demonstrating, in incrementally more complex systems, the efficacy of this one-pot strategy for the construction of interlocked molecules.
AB - The template-directed construction of crown-ether-like macrocycles around secondary dialkylammonium ions (R2NH2+) has been utilized for the expedient (one-pot) and high-yielding synthesis of a diverse range of mechanically interlocked molecules. The clipping together of appropriately designed dialdehyde and diamine compounds around R 2NH2+-containing dumbbell-shaped components proceeds through the formation, under thermodynamic control, of imine bonds. The reversible nature of this particular reaction confers the benefits of "error-checking" and "proof-reading", which one usually associates with supramolecular chemistry and strict self-assembly processes, upon these wholly molecular systems. Furthermore, these dynamic covalent syntheses exploit the efficient templating effects that the R2NH 2+ ions exert on the macrocyclization of the matched dialdehyde and diamine fragments, resulting not only in rapid rates of reaction, but also affording near-quantitative conversion of starting materials into the desired interlocked products. Once assembled, these "dynamic" interlocked compounds can be "fixed" upon reduction of the reversible imine bonds (by using BH3·THF) to give kinetically stable species, a procedure that can be performed in the same reaction vessel as the inital thermodynamically controlled assembly. Isolation and purification of the mechanically interlocked products formed by using this protocol is relatively facile, as no column chromatography is required. Herein, we present the synthesis and characterization of 1) a [2]rotaxane, 2) a [3]rotaxane, 3) a branched [4]rotaxane, 4) a bis [2]rotaxane, and 5) a novel cyclic [4]rotaxane, demonstrating, in incrementally more complex systems, the efficacy of this one-pot strategy for the construction of interlocked molecules.
KW - Dynamic covalent chemistry
KW - Imine formation
KW - Molecular recognition
KW - Noncovalent interactions
KW - Reductive amination
UR - http://www.scopus.com/inward/record.url?scp=23744481517&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=23744481517&partnerID=8YFLogxK
U2 - 10.1002/chem.200500148
DO - 10.1002/chem.200500148
M3 - Article
C2 - 15887196
AN - SCOPUS:23744481517
SN - 0947-6539
VL - 11
SP - 4655
EP - 4666
JO - Chemistry - A European Journal
JF - Chemistry - A European Journal
IS - 16
ER -