TY - JOUR
T1 - Tenofovir (TDF)-selected or abacavir (ABC)-selected low-frequency HIV type 1 subpopulations during failure with persistent viremia as detected by ultradeep pyrosequencing
AU - D'Aquila, Richard T.
AU - Geretti, Anna Marie
AU - Horton, Joseph H.
AU - Rouse, Elizabeth
AU - Kheshti, Asghar
AU - Raffanti, Stephen
AU - Oie, Katrina
AU - Pappa, Keith
AU - Ross, Lisa L.
PY - 2011/2/1
Y1 - 2011/2/1
N2 - Detection of drug resistance is critical for determining antiretroviral treatment options. Ultradeep pyrosequencing (UDPS; 454 Life Sciences) is capable of detecting virus variant subpopulations with much greater sensitivity than population sequencing, which typically has a detection limit around 20%. UDPS of the HIV-1 reverse transcriptase (RT) (amino acids 56-120) was performed to detect the key mutations K65R and L74V associated with tenofovir and abacavir use. Plasma specimens from subjects with persistent rebound viremia following suppression on tenofovir (n = 8) or abacavir (n = 9)-based therapy were studied. Samples from a subject treated with zidovudine/lamivudine/efavirenz with a similar loss of virologic response served as a control. HIV-1 plasma RNA was ≥3.68 log10 copies/ml at all time points sequenced. The median number of UDPS sequences analyzed/time point was 33,246. Among the eight tenofovir-treated subjects, three showed high-frequency (>20%) RT K65R at the time of failure, whereas one showed low-frequency (<20%) L74V; no low-frequency K65R was detected in these subjects. Among the nine abacavir-treated subjects, three showed low-frequency K65R; no L74V was detected in these patients. No K65R or L74V was detected in the samples from the control subject. At failure, other RT mutations were detected, including low-frequency NNRTI-resistant species detected at ≥1 time point in nine subjects; the key NNRTI mutation K103N, however, was always observed at >20% frequency. Although UDPS is useful in the detection of low-frequency subpopulations with transmitted resistance in antiviral-naive patients, it may have less utility in treatment-experienced patients with persistent viremia on therapy.
AB - Detection of drug resistance is critical for determining antiretroviral treatment options. Ultradeep pyrosequencing (UDPS; 454 Life Sciences) is capable of detecting virus variant subpopulations with much greater sensitivity than population sequencing, which typically has a detection limit around 20%. UDPS of the HIV-1 reverse transcriptase (RT) (amino acids 56-120) was performed to detect the key mutations K65R and L74V associated with tenofovir and abacavir use. Plasma specimens from subjects with persistent rebound viremia following suppression on tenofovir (n = 8) or abacavir (n = 9)-based therapy were studied. Samples from a subject treated with zidovudine/lamivudine/efavirenz with a similar loss of virologic response served as a control. HIV-1 plasma RNA was ≥3.68 log10 copies/ml at all time points sequenced. The median number of UDPS sequences analyzed/time point was 33,246. Among the eight tenofovir-treated subjects, three showed high-frequency (>20%) RT K65R at the time of failure, whereas one showed low-frequency (<20%) L74V; no low-frequency K65R was detected in these subjects. Among the nine abacavir-treated subjects, three showed low-frequency K65R; no L74V was detected in these patients. No K65R or L74V was detected in the samples from the control subject. At failure, other RT mutations were detected, including low-frequency NNRTI-resistant species detected at ≥1 time point in nine subjects; the key NNRTI mutation K103N, however, was always observed at >20% frequency. Although UDPS is useful in the detection of low-frequency subpopulations with transmitted resistance in antiviral-naive patients, it may have less utility in treatment-experienced patients with persistent viremia on therapy.
UR - http://www.scopus.com/inward/record.url?scp=79951688500&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79951688500&partnerID=8YFLogxK
U2 - 10.1089/aid.2010.0077
DO - 10.1089/aid.2010.0077
M3 - Article
C2 - 20929395
AN - SCOPUS:79951688500
SN - 0889-2229
VL - 27
SP - 201
EP - 209
JO - AIDS research and human retroviruses
JF - AIDS research and human retroviruses
IS - 2
ER -