Text summarization in the biomedical domain: A systematic review of recent research

Rashmi Mishra, Jiantao Bian, Marcelo Fiszman, Charlene R. Weir, Siddhartha Jonnalagadda, Javed Mostafa, Guilherme Del Fiol*

*Corresponding author for this work

    Research output: Contribution to journalReview articlepeer-review

    116 Scopus citations

    Abstract

    Objective: The amount of information for clinicians and clinical researchers is growing exponentially. Text summarization reduces information as an attempt to enable users to find and understand relevant source texts more quickly and effortlessly. In recent years, substantial research has been conducted to develop and evaluate various summarization techniques in the biomedical domain. The goal of this study was to systematically review recent published research on summarization of textual documents in the biomedical domain. Materials and methods: MEDLINE (2000 to October 2013), IEEE Digital Library, and the ACM digital library were searched. Investigators independently screened and abstracted studies that examined text summarization techniques in the biomedical domain. Information is derived from selected articles on five dimensions: input, purpose, output, method and evaluation. Results: Of 10,786 studies retrieved, 34 (0.3%) met the inclusion criteria. Natural language processing (17; 50%) and a hybrid technique comprising of statistical, Natural language processing and machine learning (15; 44%) were the most common summarization approaches. Most studies (28; 82%) conducted an intrinsic evaluation. Discussion: This is the first systematic review of text summarization in the biomedical domain. The study identified research gaps and provides recommendations for guiding future research on biomedical text summarization. Conclusion: Recent research has focused on a hybrid technique comprising statistical, language processing and machine learning techniques. Further research is needed on the application and evaluation of text summarization in real research or patient care settings.

    Original languageEnglish (US)
    Pages (from-to)457-467
    Number of pages11
    JournalJournal of Biomedical Informatics
    Volume52
    DOIs
    StatePublished - Dec 1 2014

    Keywords

    • Biomedical domain
    • Intrinsic evaluation
    • Language processing
    • Machine learning
    • Text summarization

    ASJC Scopus subject areas

    • Health Informatics
    • Computer Science Applications

    Fingerprint

    Dive into the research topics of 'Text summarization in the biomedical domain: A systematic review of recent research'. Together they form a unique fingerprint.

    Cite this