Texture, strain, and phase-fraction measurements during mechanical cycling in superelastic NiTi

R. Vaidyanathan*, M. A.M. Bourke, D. C. Dunand

*Corresponding author for this work

Research output: Contribution to journalArticle

50 Scopus citations

Abstract

Superelastic NiTi was subjected to simultaneous neutron diffraction and uniaxial compressive cycling between 10 and 980 MPa. The objective was an in-situ investigation of the evolution of the stress-induced, reversible transformation between austenite and martensite, to determine the cause of the changes in the macroscopic stress-strain response with cycling. Rietveld refinement was used to analyze the neutron spectra and quantify the phase fraction, texture, and elastic strain. The average phase strain in the mechanically loaded austenite (at a given stress) remained unaltered during the 100 load-unload cycles. However, differences in both the volume fraction and texture of austenite and martensite were noted as cycling progressed, suggesting that these factors are responsible for the changes in the macroscopic stress-strain response of NiTi with mechanical cycling.

Original languageEnglish (US)
Pages (from-to)777-786
Number of pages10
JournalMetallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
Volume32
Issue number13
DOIs
StatePublished - Dec 1 2001

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Mechanics of Materials
  • Metals and Alloys

Fingerprint Dive into the research topics of 'Texture, strain, and phase-fraction measurements during mechanical cycling in superelastic NiTi'. Together they form a unique fingerprint.

  • Cite this