TY - CHAP
T1 - Thalamic pathology in schizophrenia
AU - Cronenwett, Will J
AU - Csernansky, John G
PY - 2010/1/1
Y1 - 2010/1/1
N2 - The thalamus plays a critical role in the coordination of information as it passes from region to region within the brain. A disruption of that information flow may give rise to some of the cardinal symptoms of schizophrenia. In support of this hypothesis, schizophrenia-like syndromes emerge when illnesses, such as stroke, selectively damage the thalamus while sparing the rest of the brain. Evidence from many sources has implicated thalamic dysfunction in schizophrenia. In postmortem studies, several subregions of the thalamus, including the mediodorsal nucleus and the pulvinar, have been shown to have fewer neurons in schizophrenia. Neurochemical disturbances are also seen, with changes in both the glutamate and dopamine systems; thalamic glutamate receptor expression is altered in schizophrenia, and dopamine appears to be elevated in thalamic subregions, while evidence exists of an imbalance between dopamine and other neurotransmitters. In vivo studies using magnetic resonance imaging have demonstrated smaller thalamic volumes in schizophrenia, as well as shape deformations suggesting changes in those thalamic regions that are most densely connected to the portions of the brain responsible for executive function and sensory integration. These changes seem to be correlated with clinical symptoms. The thalamus is a starting point for several parallel, overlapping networks that extend from thalamic nuclei to the cortex. Evidence is emerging that changes in the thalamic nodes of these networks are echoed by changes at other points along the chain; this suggests that schizophrenia might be a disease of disrupted thalamocortical neural networks. This model distributes the pathology throughout the network, but also concentrates attention on the thalamus as a critical structure, especially because of its role in coordinating the flow of information within and between neural networks.
AB - The thalamus plays a critical role in the coordination of information as it passes from region to region within the brain. A disruption of that information flow may give rise to some of the cardinal symptoms of schizophrenia. In support of this hypothesis, schizophrenia-like syndromes emerge when illnesses, such as stroke, selectively damage the thalamus while sparing the rest of the brain. Evidence from many sources has implicated thalamic dysfunction in schizophrenia. In postmortem studies, several subregions of the thalamus, including the mediodorsal nucleus and the pulvinar, have been shown to have fewer neurons in schizophrenia. Neurochemical disturbances are also seen, with changes in both the glutamate and dopamine systems; thalamic glutamate receptor expression is altered in schizophrenia, and dopamine appears to be elevated in thalamic subregions, while evidence exists of an imbalance between dopamine and other neurotransmitters. In vivo studies using magnetic resonance imaging have demonstrated smaller thalamic volumes in schizophrenia, as well as shape deformations suggesting changes in those thalamic regions that are most densely connected to the portions of the brain responsible for executive function and sensory integration. These changes seem to be correlated with clinical symptoms. The thalamus is a starting point for several parallel, overlapping networks that extend from thalamic nuclei to the cortex. Evidence is emerging that changes in the thalamic nodes of these networks are echoed by changes at other points along the chain; this suggests that schizophrenia might be a disease of disrupted thalamocortical neural networks. This model distributes the pathology throughout the network, but also concentrates attention on the thalamus as a critical structure, especially because of its role in coordinating the flow of information within and between neural networks.
KW - Dysconnection neural networks
KW - Magnetic resonance imaging
KW - Mediodorsal nucleus
KW - Pulvinar
KW - Thalamorcortical relays
KW - Thalamus
UR - http://www.scopus.com/inward/record.url?scp=79952276068&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79952276068&partnerID=8YFLogxK
U2 - 10.1007/7854_2010_55
DO - 10.1007/7854_2010_55
M3 - Chapter
C2 - 21312411
AN - SCOPUS:79952276068
SN - 9783642137167
T3 - Current Topics in Behavioral Neurosciences
SP - 509
EP - 528
BT - Behavioral Neurobiology of Schizophrenia and Its Treatment
PB - Springer Verlag
ER -