Abstract
Epstein-Barr virus (EBV) infects B lymphocytes and epithelial cells. While the glycoproteins required for entry into these two cell types differ, the gH/gL glycoprotein complex is essential for entry into both epithelial and B cells. Analysis of gH protein sequences from three gammaherpesviruses (EBV, marmoset, and rhesus) revealed a potential coiled-coil domain in the N terminus. Four leucines located in this region in EBV gH were replaced by alanines by site-directed mutagenesis and analyzed for cell-cell membrane fusion with B cells and epithelial cells. Reduction in fusion activity was observed for mutants containing L65A and/or L69A mutations, while substitutions in L55 and L74 enhanced the fusion activity of the mutant gH/gL complexes with both cell types. All of the mutants displayed levels of cell surface expression similar to those of wild-type gH and interacted with gL and gp42. The observation that a conservative mutation of leucine to alanine in the N terminus of EBV gH results in fusion-defective mutant gH/gL complexes is striking and points to an important role for this region in EBV-mediated membrane fusion with B lymphocytes and epithelial cells.
Original language | English (US) |
---|---|
Pages (from-to) | 12408-12415 |
Number of pages | 8 |
Journal | Journal of virology |
Volume | 79 |
Issue number | 19 |
DOIs | |
State | Published - Oct 2005 |
ASJC Scopus subject areas
- Insect Science
- Virology
- Microbiology
- Immunology