Abstract
Autophagy dysregulation is implicated in metabolic diseases, including type 2 diabetes. However, the mechanism by which the autophagy machinery regulates metabolism is largely unknown. Autophagy is generally considered a degradation process via lysosomes. Here, we unveil a metabolically important non-cell-autonomous, non-degradative mechanism regulated by the essential autophagy protein Becn1 in adipose tissue. Upon high-fat diet challenge, autophagy-hyperactive Becn1F121A mice show systemically improved insulin sensitivity and enhanced activation of AMP-activated protein kinase (AMPK), a central regulator of energy homeostasis, via a non-cell-autonomous mechanism mediated by adiponectin, an adipose-derived metabolic hormone. Adipose-specific Becn1F121A expression is sufficient to activate AMPK in non-adipose tissues and improve systemic insulin sensitivity by increasing adiponectin secretion. Further, Becn1 enhances adiponectin secretion by interacting with components of the exocyst complex via the coiled-coil domain. Together, our study demonstrates that Becn1 improves insulin sensitivity by facilitating adiponectin secretion through binding the exocyst in adipose tissue.
Original language | English (US) |
---|---|
Article number | 109184 |
Journal | Cell reports |
Volume | 35 |
Issue number | 8 |
DOIs | |
State | Published - May 25 2021 |
Keywords
- AMPK
- Becn1
- Sec6
- adiponectin
- adipose tissue
- autophagy
- exocyst
- glucose tolerance
- insulin sensitivity
ASJC Scopus subject areas
- Biochemistry, Genetics and Molecular Biology(all)