The bending rigidity of mitotic chromosomes

Michael G. Poirier*, Sertac Eroglu, John F. Marko

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

53 Scopus citations

Abstract

The bending rigidities of mitotic chromosomes isolated from cultured N. viridescens (newt) and Xenopus epithelial cells were measured by observing their spontaneous thermal bending fluctuations. When combined with simultaneous measurement of stretching elasticity, these measurements constrain models for higher order mitotic chromosome structure. We measured bending rigidities of B ∼10-22 N · m2 for newt and ∼10-23 N · m2 for Xenopus chromosomes extracted from cells. A similar bending rigidity was measured for newt chromosomes in vivo by observing bending fluctuations in metaphase-arrested cells. Following each bending rigidity measurement, a stretching (Young's) modulus of the same chromosome was measured in the range of 102 to 103 Pa for newt and Xenopus chromosomes. For each chromosome, these values of B and Y are consistent with those expected for a simple elastic rod, B ≈ YR4, where R is the chromosome cross-section radius. Our measurements rule out the possibility that chromosome stretching and bending elasticity are principally due to a stiff central core region and are instead indicative of an internal structure, which is essentially homogeneous in its connectivity across the chromosome cross-section.

Original languageEnglish (US)
Pages (from-to)2170-2179
Number of pages10
JournalMolecular biology of the cell
Volume13
Issue number6
DOIs
StatePublished - 2002

ASJC Scopus subject areas

  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'The bending rigidity of mitotic chromosomes'. Together they form a unique fingerprint.

Cite this