The Brown-Comenetz dual of the K(2)-local sphere at the prime 3

Paul G. Goerss*, Hans Werner Henn

*Corresponding author for this work

Research output: Contribution to journalArticle

5 Scopus citations

Abstract

We calculate the homotopy type of the Brown-Comenetz dual I2 of the K(2)-local sphere at the prime 3 and show that there is an equivalence in the K(2)-local category between I2 and a smash product of the determinant twisted sphere and an exotic element P in the Picard group. We give a characterization of P as well. A secondary aim of the paper is to extend our library of calculations in the K(2)-local category.

Original languageEnglish (US)
Pages (from-to)648-678
Number of pages31
JournalAdvances in Mathematics
Volume288
DOIs
StatePublished - Jan 22 2016

Keywords

  • Brown-Comenetz duality
  • Chromatic stable homotopy theory

ASJC Scopus subject areas

  • Mathematics(all)

Fingerprint Dive into the research topics of 'The Brown-Comenetz dual of the K(2)-local sphere at the prime 3'. Together they form a unique fingerprint.

  • Cite this