Abstract
The chemistry and structure of {222} CdO/Ag (ceramic/metal) heterophase interfaces are determined with sub-nanometer chemical and structural spatial resolution employing atom-probe field-ion and high-resolution electron microscopies. The interfaces are produced in a controlled manner via internal oxidation of a Ag-1.62at%Cd alloy, which results in the formation of CdO precipitates in a Ag matrix. The CdO precipitates are octahedral-shaped with facets on the {222} polar planes, and have a cube-on-cube orientation relationship with the Ag matrix. Atom-probe analyses are made along the chemically-ordered CdO 〈111〉-type directions, thereby perpendicularly intersecting the {222} interfaces. A total of 35 {222} heterophase interfaces is chemically analyzed, of which 19 have the chemical sequence Ag|O|Cd|... and 16 the sequence Ag|Cd|O|.... High resolution electron microscopy analyses reveal that the {222} facet planes of the CdO precipitates contain atomic height ledges, therefore indicating that the preciptates were in a coarsening stage. The combined atom-probe and high-resolution electron microscope results demonstrate that the chemistry of the terminating {222} facet plane of CdO is controlled by coarsening kinetics.
Original language | English (US) |
---|---|
Pages (from-to) | 409-415 |
Number of pages | 7 |
Journal | Applied Surface Science |
Volume | 94-95 |
DOIs | |
State | Published - Mar 1996 |
ASJC Scopus subject areas
- Chemistry(all)
- Condensed Matter Physics
- Physics and Astronomy(all)
- Surfaces and Interfaces
- Surfaces, Coatings and Films