The contribution of air to ultrasonic friction reduction

Rebecca Fenton Friesen, Michael Wiertlewski, Michael A. Peshkin, J. Edward Colgate

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations


The origin of friction reduction on an ultrasonically vibrating plate has been the subject of debate. Recent work suggests that friction may be reduced due to intermittent contact caused by bouncing upon the vibrating surface [1], leaving the question of whether other phenomena such as levitation on a squeeze film of air also play a role. To probe the contribution of squeeze film levitation, we investigated the dependence of the friction reduction effect upon air pressure. An artificial finger was placed inside a vacuum chamber, touching an ultrasonic friction reduction device composed of a glass plate vibrated by piezo-actuators. Friction between the finger and the glass was measured by rotating the finger with a motor, and measuring the motor's torque load. Decreased friction is signaled by decreased motor current. Compared to atmospheric pressure, a 98% vacuum inside the chamber was observed to markedly diminish the friction reduction effect, suggesting that squeeze film levitation does indeed play a substantial role in ultrasonic friction reduction.

Original languageEnglish (US)
Title of host publication2017 IEEE World Haptics Conference, WHC 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Number of pages6
ISBN (Electronic)9781509014255
StatePublished - Jul 21 2017
Event7th IEEE World Haptics Conference, WHC 2017 - Munich, Germany
Duration: Jun 6 2017Jun 9 2017

Publication series

Name2017 IEEE World Haptics Conference, WHC 2017


Other7th IEEE World Haptics Conference, WHC 2017

ASJC Scopus subject areas

  • Instrumentation
  • Cognitive Neuroscience
  • Sensory Systems
  • Human Factors and Ergonomics
  • Human-Computer Interaction


Dive into the research topics of 'The contribution of air to ultrasonic friction reduction'. Together they form a unique fingerprint.

Cite this