The Cosmic Ultraviolet Baryon Survey: Empirical Characterization of Turbulence in the Cool Circumgalactic Medium

Hsiao Wen Chen*, Zhijie Qu, Michael Rauch, Mandy C. Chen, Fakhri S. Zahedy, Sean D. Johnson, Joop Schaye, Gwen C. Rudie, Erin Boettcher, Sebastiano Cantalupo, Claude André Faucher-Giguère, Jenny E. Greene, Sebastian Lopez, Robert A. Simcoe

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

This paper reports the first measurement of the relationship between turbulent velocity and cloud size in the diffuse circumgalactic medium (CGM) in typical galaxy halos at redshift z ≈ 0.4-1. Through spectrally resolved absorption profiles of a suite of ionic transitions paired with careful ionization analyses of individual components, cool clumps of size as small as l cl ∼ 1 pc and density lower than n H = 10−3 cm−3 are identified in galaxy halos. In addition, comparing the line widths between different elements for kinematically matched components provides robust empirical constraints on the thermal temperature T and the nonthermal motions b NT, independent of the ionization models. On average, b NT is found to increase with l cl following b NT ∝ l cl 0.3 over three decades in spatial scale from l cl ≈ 1 pc to l cl ≈ 1 kpc. Attributing the observed b NT to turbulent motions internal to the clumps, the best-fit b NT-l cl relation shows that the turbulence is consistent with Kolmogorov at <1 kpc with a roughly constant energy transfer rate per unit mass of ϵ ≈ 0.003 cm2 s−3 and a dissipation timescale of ≲100 Myr. No significant difference is found between massive quiescent and star-forming halos in the sample on scales less than 1 kpc. While the inferred ϵ is comparable to what is found in C iv absorbers at high redshift, it is considerably smaller than observed in star-forming gas or in extended line-emitting nebulae around distant quasars. A brief discussion of possible sources to drive the observed turbulence in the cool CGM is presented.

Original languageEnglish (US)
Article numberL25
JournalAstrophysical Journal Letters
Volume955
Issue number1
DOIs
StatePublished - Sep 1 2023

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'The Cosmic Ultraviolet Baryon Survey: Empirical Characterization of Turbulence in the Cool Circumgalactic Medium'. Together they form a unique fingerprint.

Cite this