The DNA-binding properties of two heat shock factors, HSF1 and HSF3, are induced in the avian erythroblast cell line HD6

A. Nakai, Y. Kawazoe, M. Tanabe, K. Nagata, R. I. Morimoto

Research output: Contribution to journalArticlepeer-review

86 Scopus citations

Abstract

Avian cells express three heat shock transcription factor (HSF) genes corresponding to a novel factor, HSF3, and homologs of mouse and human HSF1 and HSF2. Analysis of the biochemical and cell biological properties of these HSFs reveals that HSF3 has properties in common with both HSF1 and HSF2 and yet has features which are distinct from both. HSF3 is constitutively expressed in the erythroblast cell line HD6, the lymphoblast cell line MSB, and embryo fibroblasts, and yet its DNA-binding activity is induced only upon exposure of HD6 cells to heat shock. Acquisition of HSF3 DNA-binding activity in HD6 cells is accompanied by oligomerization from a non-DNA-binding dimer to a DNA-binding trimer, whereas the effect of heat shock on HSF1 is oligomerization of an inert monomer to a DNA-binding trimer. Induction of HSF3 DNA-binding activity is delayed compared with that of HSF1. As occurs for HSF1, heat shock leads to the translocation of HSF3 to the nucleus. HSF3 exhibits the properties of a transcriptional activator, as judged from the stimulatory activity of transiently overexpressed HSF3 measured by using a heat shock element-containing reporter construct and as independently assayed by the activity of a chimeric GAL4-HSF3 protein on a GAL4 reporter construct. These results reveal that HSF3 is negatively regulated in avian cells and acquires DNA-binding activity in certain cells upon heat shock.

Original languageEnglish (US)
Pages (from-to)5268-5278
Number of pages11
JournalMolecular and cellular biology
Volume15
Issue number10
DOIs
StatePublished - Oct 1995

ASJC Scopus subject areas

  • Molecular Biology
  • Cell Biology

Fingerprint Dive into the research topics of 'The DNA-binding properties of two heat shock factors, HSF1 and HSF3, are induced in the avian erythroblast cell line HD6'. Together they form a unique fingerprint.

Cite this