TY - JOUR
T1 - The dynamical evolution of stellar black holes in globular clusters
AU - Morscher, Meagan
AU - Pattabiraman, Bharath
AU - Rodriguez, Carl
AU - Rasio, Frederic A.
AU - Umbreit, Stefan
N1 - Publisher Copyright:
© 2015. The American Astronomical Society. All rights reserved.
PY - 2015/2/10
Y1 - 2015/2/10
N2 - Our current understanding of the stellar initial mass function and massive star evolution suggests that young globular clusters (GCs) may have formed hundreds to thousands of stellar-mass black holes (BHs), the remnants of stars with initial masses from ∼20-100 M . Birth kicks from supernova explosions may eject some BHs from their birth clusters, but most should be retained. Using a Monte Carlo method we investigate the long-term dynamical evolution of GCs containing large numbers of stellar BHs. We describe numerical results for 42 models, covering a broad range of realistic initial conditions, including up to 1.6 × 106 stars. In almost all models we find that significant numbers of BHs (up to ∼103) are retained all the way to the present. This is in contrast to previous theoretical expectations that most BHs should be ejected dynamically within a few gigayears The main reason for this difference is that core collapse driven by BHs (through the Spitzer "mass segregation instability") is easily reverted through three-body processes, and involves only a small number of the most massive BHs, while lower-mass BHs remain well-mixed with ordinary stars far from the central cusp. Thus the rapid segregation of stellar BHs does not lead to a long-term physical separation of most BHs into a dynamically decoupled inner core, as often assumed previously. Combined with the recent detections of several BH X-ray binary candidates in Galactic GCs, our results suggest that stellar BHs could still be present in large numbers in many GCs today, and that they may play a significant role in shaping the long-term dynamical evolution and the present-day dynamical structure of many clusters.
AB - Our current understanding of the stellar initial mass function and massive star evolution suggests that young globular clusters (GCs) may have formed hundreds to thousands of stellar-mass black holes (BHs), the remnants of stars with initial masses from ∼20-100 M . Birth kicks from supernova explosions may eject some BHs from their birth clusters, but most should be retained. Using a Monte Carlo method we investigate the long-term dynamical evolution of GCs containing large numbers of stellar BHs. We describe numerical results for 42 models, covering a broad range of realistic initial conditions, including up to 1.6 × 106 stars. In almost all models we find that significant numbers of BHs (up to ∼103) are retained all the way to the present. This is in contrast to previous theoretical expectations that most BHs should be ejected dynamically within a few gigayears The main reason for this difference is that core collapse driven by BHs (through the Spitzer "mass segregation instability") is easily reverted through three-body processes, and involves only a small number of the most massive BHs, while lower-mass BHs remain well-mixed with ordinary stars far from the central cusp. Thus the rapid segregation of stellar BHs does not lead to a long-term physical separation of most BHs into a dynamically decoupled inner core, as often assumed previously. Combined with the recent detections of several BH X-ray binary candidates in Galactic GCs, our results suggest that stellar BHs could still be present in large numbers in many GCs today, and that they may play a significant role in shaping the long-term dynamical evolution and the present-day dynamical structure of many clusters.
KW - binaries: close
KW - globular clusters: general
KW - gravitational waves
KW - methods: numerical
KW - stars: black holes
KW - stars: kinematics and dynamics
UR - http://www.scopus.com/inward/record.url?scp=84922570087&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84922570087&partnerID=8YFLogxK
U2 - 10.1088/0004-637X/800/1/9
DO - 10.1088/0004-637X/800/1/9
M3 - Article
AN - SCOPUS:84922570087
SN - 2041-8205
VL - 800
JO - Astrophysical Journal Letters
JF - Astrophysical Journal Letters
IS - 1
M1 - 9
ER -