The edge density barrier: Computational-statistical tradeoffs in combinatorial inference

Hao Lu, Yuan Cao, Junwei Lu, Han Liu, Zhaoran Wang*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

We study the hypothesis testing problem of inferring the existence of combinatorial structures in undirected graphical models. Although there exist extensive studies on the information-theoretic limits of this problem, it remains largely unexplored whether such limits can be attained by efficient algorithms. In this paper, we quantify the minimum computational complexity required to attain the information-theoretic limits based on an oracle computational model. We prove that, for testing common combinatorial structures, such as clique, nearest neighbor graph and perfect matching, against an empty graph, or large clique against small clique, the information-theoretic limits are provably unachievable by tractable algorithms in general. More importantly, we define structural quantities called the weak and strong edge densities, which offer deep insight into the existence of such computational-statistical tradeoffs. To the best of our knowledge, our characterization is the first to identify and explain the fundamental tradeoffs between statistics and computation for combinatorial inference problems in undirected graphical models.

Original languageEnglish (US)
Title of host publication35th International Conference on Machine Learning, ICML 2018
EditorsJennifer Dy, Andreas Krause
PublisherInternational Machine Learning Society (IMLS)
Pages5119-5148
Number of pages30
ISBN (Electronic)9781510867963
StatePublished - 2018
Event35th International Conference on Machine Learning, ICML 2018 - Stockholm, Sweden
Duration: Jul 10 2018Jul 15 2018

Publication series

Name35th International Conference on Machine Learning, ICML 2018
Volume7

Other

Other35th International Conference on Machine Learning, ICML 2018
Country/TerritorySweden
CityStockholm
Period7/10/187/15/18

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Human-Computer Interaction
  • Software

Fingerprint

Dive into the research topics of 'The edge density barrier: Computational-statistical tradeoffs in combinatorial inference'. Together they form a unique fingerprint.

Cite this