The effect of the rate of hydrostatic pressure depressurization on cells in culture

Ellen Tworkoski, Matthew R. Glucksberg, Mark Johnson*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Changes in hydrostatic pressure, at levels as low as 10 mm Hg, have been reported in some studies to alter cell function in vitro; however, other studies have found no detectable changes using similar methodologies. We here investigate the hypothesis that the rate of depressurization, rather than elevated hydrostatic pressure itself, may be responsible for these reported changes. Hydrostatic pressure (100 mm Hg above atmospheric pressure) was applied to bovine aortic endothelial cells (BAECs) and PC12 neuronal cells using pressurized gas for periods ranging from 3 hours to 9 days, and then the system was either slowly (~30 minutes) or rapidly (~5 seconds) depressurized. Cell viability, apoptosis, proliferation, and F-actin distribution were then assayed. Our results did not show significant differences between rapidly and slowly depressurized cells that would explain differences previously reported in the literature. Moreover, we found no detectable effect of elevated hydrostatic pressure (with slow depressurization) on any measured variables. Our results do not confirm the findings of other groups that modest increases in hydrostatic pressure affect cell function, but we are not able to explain their findings.

Original languageEnglish (US)
Article numbere0189890
JournalPloS one
Volume13
Issue number1
DOIs
StatePublished - Jan 2018

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'The effect of the rate of hydrostatic pressure depressurization on cells in culture'. Together they form a unique fingerprint.

Cite this