Abstract
MEF is an ETS-related transcription factor with strong transcriptional activating activity that affects hematopoietic stem cell behavior and is required for normal NK cell and NK T-cell development. The MEF (also known as ELF4) gene is repressed by several leukemia-associated fusion transcription factor proteins (PML-retinoic acid receptor α and AML1-ETO), but it is also activated by retroviral insertion in several cancer models. We have previously shown that cyclin A-dependent phosphorylation of MEF largely restricts its activity to the G1 phase of the cell cycle; we now show that MEF is a short-lived protein whose expression level also peaks during late G1 phase. Mutagenesis studies show that the rapid turnover of MEF in S phase is dependent on the specific phosphorylation of threonine 643 and serine 648 at the C terminus of MEF by cdk2 and on the Skp1/Cul1/F-box (SCF) E3 ubiquitin ligase complex SCFSkp2, which targets MEF for ubiquitination and proteolysis. Overexpression of MEF drives cells through the G1/S transition, thereby promoting cell proliferation. The tight regulation of MEF levels during the cell cycle contributes to its effects on regulating cell cycle entry and cell proliferation.
Original language | English (US) |
---|---|
Pages (from-to) | 3114-3123 |
Number of pages | 10 |
Journal | Molecular and cellular biology |
Volume | 26 |
Issue number | 8 |
DOIs | |
State | Published - Apr 2006 |
Externally published | Yes |
ASJC Scopus subject areas
- Molecular Biology
- Cell Biology