The evolution of darker wings in seabirds in relation to temperature-dependent flight efficiency

Svana Rogalla*, Michaël P.J. Nicolaï*, Sara Porchetta, Gertjan Glabeke, Claudia Battistella, Liliana D'Alba, Nathan C. Gianneschi, Jeroen Van Beeck, Matthew D. Shawkey

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

Seabirds have evolved numerous adaptations that allow them to thrive under hostile conditions. Many seabirds share similar colour patterns, often with dark wings, suggesting that their coloration might be adaptive. Interestingly, these darker wings become hotter when birds fly under high solar irradiance, and previous studies on aerofoils have provided evidence that aerofoil surface heating can affect the ratio between lift and drag, i.e. flight efficiency. However, whether this effect benefits birds remains unknown. Here, we first used phylogenetic analyses to show that strictly oceanic seabirds with a higher glide performance (optimized by reduced sink rates, i.e. the altitude lost over time) have evolved darker wings, potentially as an additional adaptation to improve flight. Using wind tunnel experiments, we then showed that radiative heating of bird wings indeed improves their flight efficiency. These results illustrate that seabirds may have evolved wing pigmentation in part through selection for flight performance under extreme ocean conditions. We suggest that other bird clades, particularly long-distance migrants, might also benefit from this effect and therefore might show similar evolutionary trajectories. These findings may also serve as a guide for bioinspired innovations in aerospace and aviation, especially in low-speed regimes.

Original languageEnglish (US)
Article number20210236
JournalJournal of the Royal Society Interface
Volume18
Issue number180
DOIs
StatePublished - Jul 2021

Keywords

  • Bird flight
  • Countershading
  • Flight efficiency
  • Flight performance
  • Wing coloration

ASJC Scopus subject areas

  • Bioengineering
  • Biophysics
  • Biochemistry
  • Biotechnology
  • Biomedical Engineering
  • Biomaterials

Fingerprint

Dive into the research topics of 'The evolution of darker wings in seabirds in relation to temperature-dependent flight efficiency'. Together they form a unique fingerprint.

Cite this