The flare activity of Sagittarius A* New coordinated mm to X-ray observations

A. Eckart*, F. K. Baganoff, R. Schödel, M. Morris, R. Genzel, G. C. Bower, D. Marrone, J. M. Moran, T. Viehmann, M. W. Bautz, W. N. Brandt, G. P. Garmire, T. Ott, S. Trippe, G. R. Ricker, C. Straubmeier, D. A. Roberts, F. Yusef-Zadeh, J. H. Zhao, R. Rao

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

171 Scopus citations

Abstract

Context. We report new simultaneous near-infrared/sub-millimeter/X-ray observations of the Sgr A* counterpart associated with the massive 3-4 × 106 M black hole at the Galactic Center. Aims. We investigate the physical processes responsible for the variable emission from Sgr A*. Methods. The observations have been carried out using the NACO adaptive optics (AO) instrument at the European Southern Observatory's Very Large Telescope* and the ACIS-I instrument aboard the Chandra X-ray Observatory as well as the Submillimeter Array SMA** on Mauna Kea, Hawaii, and the Very Large Array*** in New Mexico. Results. We detected one moderately bright flare event in the X-ray domain and 5 events at infrared wavelengths. The X-ray flare had an excess 2-8 keV luminosity of about 33 × 1033 erg/s. The duration of this flare was completely covered in the infrared and it was detected as a simultaneous NIR event with a time lag of ≤10 min. Simultaneous infrared/X-ray observations are available for 4 flares. All simultaneously covered flares, combined with the flare covered in 2003, indicate that the time-lag between the NIR and X-ray flare emission is very small and in agreement with a synchronous evolution. There are no simultaneous flare detections between the NIR/X-ray data and the VLA and SMA data. The excess flux densities detected in the radio and sub-millimeter domain may be linked with the flare activity observed at shorter wavelengths. Conclusions. We find that the flaring state can be explained with a synchrotron self-Compton (SSC) model involving up-scattered submillimeter photons from a compact source component. This model allows for NIR flux density contributions from both the synchrotron and SSC mechanisms. Indications for an exponential cutoff of the NIR/MIR synchrotron spectrum allow for a straightforward explanation of the variable and red spectral indices of NIR flares.

Original languageEnglish (US)
Pages (from-to)535-555
Number of pages21
JournalAstronomy and Astrophysics
Volume450
Issue number2
DOIs
StatePublished - May 2006

Keywords

  • Accretion, accretion disks
  • Black hole physics
  • Galaxy: Center
  • Galaxy: Nucleus
  • Infrared: General
  • X-rays: General

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint Dive into the research topics of 'The flare activity of Sagittarius A* New coordinated mm to X-ray observations'. Together they form a unique fingerprint.

Cite this