The great dichotomy of the Solar System: Small terrestrial embryos and massive giant planet cores

A. Morbidelli*, M. Lambrechts, S. Jacobson, B. Bitsch

*Corresponding author for this work

Research output: Contribution to journalArticle

98 Scopus citations

Abstract

The basic structure of the Solar System is set by the presence of low-mass terrestrial planets in its inner part and giant planets in its outer part. This is the result of the formation of a system of multiple embryos with approximately the mass of Mars in the inner disk and of a few multi-Earth-mass cores in the outer disk, within the lifetime of the gaseous component of the protoplanetary disk. What was the origin of this dichotomy in the mass distribution of embryos/cores? We show in this paper that the classic processes of runaway and oligarchic growth from a disk of planetesimals cannot explain this dichotomy, even if the original surface density of solids increased at the snowline. Instead, the accretion of drifting pebbles by embryos and cores can explain the dichotomy, provided that some assumptions hold true. We propose that the mass-flow of pebbles is two-times lower and the characteristic size of the pebbles is approximately ten times smaller within the snowline than beyond the snowline (respectively at heliocentric distance r < r ice and r > rice , where rice is the snowline heliocentric distance), due to ice sublimation and the splitting of icy pebbles into a collection of chondrule-size silicate grains. In this case, objects of original sub-lunar mass would grow at drastically different rates in the two regions of the disk. Within the snowline these bodies would reach approximately the mass of Mars while beyond the snowline they would grow to ~ 20 Earth masses. The results may change quantitatively with changes to the assumed parameters, but the establishment of a clear dichotomy in the mass distribution of protoplanets appears robust provided that there is enough turbulence in the disk to prevent the sedimentation of the silicate grains into a very thin layer.

Original languageEnglish (US)
Pages (from-to)418-429
Number of pages12
JournalIcarus
Volume258
DOIs
StatePublished - 2015

Keywords

  • Accretion
  • Extra-solar planets
  • Origin, Solar System
  • Planetary formation

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint Dive into the research topics of 'The great dichotomy of the Solar System: Small terrestrial embryos and massive giant planet cores'. Together they form a unique fingerprint.

  • Cite this