Abstract
We examine experimental and theoretical results on the cold-work (Snoek-Köster) peak in bcc Fe due to H using density functional theory (DFT). We reaffirm that Seeger's interpretation of the H cold-work peak (Hcwp), involving motion of H with kinks on non-screw dislocations associated with the intrinsic-dislocation α peak, has experimental backing. Use of the solute-dragging theory of Schoeck suggests a H-mixed dislocation binding energy of 0.3 eV. The theory of Hirth, that the Hcwp involves H-screw dislocation interaction manifested as the temperature-reduced intrinsic-dislocation γ peak by the presence of H, has merit in that our DFT calculations disclose a similar magnitude, 0.2 eV, of H-screw dislocation binding. This result offers support for models of H-enhanced localized plasticity of H embrittlement. We also explore possible roles of H-vacancy binding, shown by DFT to be characterized by a binding energy of 0.6 eV, in H trapping and H embrittlement and lesser effects of H-solute binding involving small binding energies of ∼ 0.1 eV.
Original language | English (US) |
---|---|
Article number | e20170868 |
Journal | Materials Research |
Volume | 21 |
DOIs | |
State | Published - 2018 |
Funding
Trinkle provided critical insight on use of first-principles Green’s function flexible boundary conditions methodology. Funding from the General Motors Corporation and the US Department of Energy is also acknowledged.
Keywords
- Cold Work Peak
- Density Functional Theory.
- Hydrogen in Iron
ASJC Scopus subject areas
- General Materials Science
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering
Fingerprint
Dive into the research topics of 'The hydrogen cold work peak in BCC Iron: Revisited, with first principles calculations and implications for hydrogen embrittlement'. Together they form a unique fingerprint.Datasets
-
The Hydrogen Cold Work Peak in BCC Iron: Revisited, with First Principles Calculations and Implications for Hydrogen Embrittlement
Gibala, R. (Creator), Counts, W. A. (Creator) & Wolverton, C. (Creator), SciELO journals, 2018
DOI: 10.6084/m9.figshare.6693446.v1, https://scielo.figshare.com/articles/The_Hydrogen_Cold_Work_Peak_in_BCC_Iron_Revisited_with_First_Principles_Calculations_and_Implications_for_Hydrogen_Embrittlement/6693446/1
Dataset