The importance of 10q status in an outcomes-based comparison between 1p/19q fluorescence in situ hybridization and polymerase chain reaction-based microsatellite loss of heterozygosity analysis of oligodendrogliomas

Craig Horbinski*, Marina N. Nikiforova, Jonathan Hobbs, Stephanie Bortoluzzi, Kathleen Cieply, Sanja Dacic, Ronald L. Hamilton

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

21 Scopus citations

Abstract

1p/19q codeletion is a favorable prognostic marker of oligodendrogliomas. Although fluorescence in situ hybridization (FISH) and microsatellite-based polymerase chain reaction (PCR) for loss of heterozygosity (LOH) are common methods to test for 1p/19q codeletion, it is unclear which test is better at prognostic stratification. This study analyzed outcomes of 111 oligodendrogliomas with both 1p/19q FISH and LOH done at the time of diagnosis. Overall concordance between the 2 assays was 81.1%. In grade III oligodendrogliomas, LOH was better than FISH at survival stratification (p < 0.0001 for LOH vs p = 0.02 for FISH), although increasing the stringency of FISH interpretation criteria improved concordance and prognostic power. Oligodendrogliomas that were 1p/19q-codeleted by FISH but also had 10q LOH were negative for 1p/19q codeletion by PCR analysis in more than 70% of cases, with very poor survival in the grade III subset. Thus, although PCR-based LOH is a better stratifier of 1p/19q status, FISH still has clinical and prognostic utility, especially if 10q data can be incorporated.

Original languageEnglish (US)
Pages (from-to)73-82
Number of pages10
JournalJournal of neuropathology and experimental neurology
Volume71
Issue number1
DOIs
StatePublished - Jan 2012

Keywords

  • 10q
  • 1p/19q
  • Epidermal growth factor receptor
  • Fluorescence in situ hybridization
  • Loss of heterozygosity
  • Microsatellite
  • Oligodendroglioma

ASJC Scopus subject areas

  • Pathology and Forensic Medicine
  • Neurology
  • Clinical Neurology
  • Cellular and Molecular Neuroscience

Fingerprint Dive into the research topics of 'The importance of 10q status in an outcomes-based comparison between 1p/19q fluorescence in situ hybridization and polymerase chain reaction-based microsatellite loss of heterozygosity analysis of oligodendrogliomas'. Together they form a unique fingerprint.

Cite this