Abstract
Realizing functional colloidal single crystals requires precise control over nanoparticles in three dimensions across multiple size regimes. In this regard, colloidal crystallization with programmable atom equivalents (PAEs) composed of DNA-modified nanoparticles allows one to program in a sequence-specific manner crystal symmetry, lattice parameter, and, in certain cases, crystal habit. Here, we explore how salt and the electrostatic properties of DNA regulate the attachment kinetics between PAEs. Counterintuitively, simulations and theory show that at high salt concentrations (1 M NaCl), the energy barrier for crystal growth increases by over an order of magnitude compared to low concentration (0.3 M), resulting in a transition from interface-limited to diffusion-limited crystal growth at larger crystal sizes. Remarkably, at elevated salt concentrations, well-formed rhombic dodecahedron-shaped microcrystals up to 21 μm in size grow, whereas at low salt concentration, the crystal size typically does not exceed 2 μm. Simulations show an increased barrier to hybridization between complementary PAEs at elevated salt concentrations. Therefore, although one might intuitively conclude that higher salt concentration would lead to less electrostatic repulsion and faster PAE-to-PAE hybridization kinetics, the opposite is the case, especially at larger inter-PAE distances. These observations provide important insight into how solution ionic strength can be used to control the attachment kinetics of nanoparticles coated with charged polymeric materials in general and DNA in particular.
Original language | English (US) |
---|---|
Pages (from-to) | 186-191 |
Number of pages | 6 |
Journal | ACS Central Science |
Volume | 5 |
Issue number | 1 |
DOIs | |
State | Published - Jan 23 2019 |
Funding
We thank Dr. Andrew J. Senesi for his helpful discussion on SAXS data analysis. This work was supported by the following awards: the Center for Bio-Inspired Energy Science, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences Award DESC0000989 (oligonucleotide syntheses and purification, simulations); the Air Force Office of Scientific Research Award FA9550-17-1-0348 (DNA-functionalization of gold nanoparticles); and the National Science Foundation’s Materials Research Science and Engineering Center program (DMR-1121262) and made use of its Shared Facilities at the Materials Research Center of Northwestern University (EM characterization). SAXS experiments were carried out at beamline 5-ID of the DuPont-Northwestern-Dow Collaborative Access Team at the Advanced Photon Source. Use of the Advanced Photon Source at Argonne National laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357 (SAXS characterization). S.E.S. acknowledges partial support from the Center for Computation and Theory of Soft Materials Fellowship.
ASJC Scopus subject areas
- General Chemical Engineering
- General Chemistry